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ABSTRACT. Does the source of Research and Development funding, public or private, mat-

ter for aggregate productivity growth? Using a novel firm-level dataset with patent and

balance-sheet information covering 70 years (1950-2020), I estimate the impact of the de-

cline in public R&D in the US on long-run productivity growth. I use two instrumental

variable strategies–a historical shift-share IV and a patent examiner leniency instrument–to

estimate the impact of the decline in public R&D on the productivity of firms through tech-

nology spillovers. I find that a 1% decline in public R&D spillovers causes a 0.03 to 0.08%

decline in firm TFP growth. Public R&D spillovers appear to be two to three times as im-

pactful as private R&D spillovers for firm productivity. Moreover, smaller firms experience

larger productivity gains from public R&D spillovers. I calibrate a model of growth with

heterogeneous firms which suggests that the decline in public R&D can explain around a

third of the decline in TFP growth in the US from 1950 to 2017, and a third of the rise in

size inequality between firms over the same period.
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1. INTRODUCTION

The history of American technological progress is rich with examples of successful applications

of government-funded research to the wider market economy. For instance, the US Department of

Energy pioneered the development of lithium-iron batteries in the 1970s, and today’s fast-growing

vertical farming industry builds upon technologies first developed in the 1990s by NASA to grow

plants in space. These public-to-private technology spillovers have been celebrated by advocates

of a state-led approach to innovation. However, many see them as cherry-picked examples of an

inefficient allocation of resources away from the private sector.

In spite of an extensive body of work on the topic of spillovers and growth, the impact of the

decline in public R&D on productivity has remained an open question for three reasons. First,

studying public-to-private spillovers at the firm level over 70 years is demanding in terms of data,

and existing panels of firms matched to their innovations (usually measured by patents) are inad-

equate. These existing panels (i) are either too short, or (ii) do not contain sufficient information

on who is funding R&D, or (iii) do not have measures of productivity at the firm level. Secondly,

comparing the impact of public and private spillovers in a unified, causal econometric framework

has not been attempted, perhaps because of the difficulty of finding plausible identification strate-

gies for the impact of public R&D spillovers. Lastly, linking the impact of public R&D spillovers

on firms to their aggregate consequences at the national level requires a cautious treatment of

general equilibrium effects.

In this paper, I address these challenges empirically and theoretically. I combine a newly as-

sembled panel of firms matched to patents over seven decades (1950-2020) with two novel instru-

mental variable strategies to estimate the causal impact of public-to-private and private-to-private

spillovers on firms’ long-term outcomes. I then use the estimated spillover elasticities to calibrate

a general equilibrium model of growth with heterogeneous firms. From these exercises, four key

findings emerge.

The first key finding is that public R&D is different from private R&D, in particular in how

much closer to science it is. I show that, even after controlling for differences in inputs into the

research process, public R&D patents are more than twice as likely to rely on scientific publica-

tions than private R&D patents. Furthermore, I use a new measure of how ‘ahead of its time’ a

patent is to show that public R&D patents are more likely to open new technological fields. These

public R&D patents are also cited across a wider array of patent classes. Finally, they tend to be

disproportionately cited by small firms. These facts suggest that publicly-funded patents embody

ideas that are less appropriable by the original inventor and are therefore more likely to spill over

to the rest of the economy.
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The second key finding is that public-to-private spillovers have a large and positive causal

impact on firms’ productivity and innovative effort. Identification comes from a historical shift-

share instrumental variable setting (SSIV), where I combine firm-level shares of exposure to R&D

funded by US federal agencies with R&D funding shocks induced by geopolitical factors (such

as wars, the Space race, the 1973 oil shock, etc.). Exposure shares are defined by the overlap in

technologies in which a public agency and a company are active. The identifying assumption is

that firm-level outcomes are orthogonal to the federal funding shocks conditional on time, indus-

try, geography and lagged firm controls. As such, the identification relies on a quasi-experimental

SSIV approach with exogenous shocks (Borusyak et al., 2022).1 I obtain historical estimates of the

elasticity of impact of an increase in exposure to public R&D on long-term firm outcomes such

as productivity, patent production, own R&D and sales over a long period (1945 to 2005). My

estimates suggest that a 1% increase in exposure to public R&D causes a .025% rise in firm-level

productivity. Additionally, public spillovers are more potent for smaller firms, perhaps because

these firms have fewer resources to do in-house R&D (Acs et al., 1994). As such, a decline in pub-

lic R&D may be one of the causes of the rising inequality between firms and the growth of large

firms.2

The third finding is that public R&D spillovers are between two to three times as impactful as

private R&D spillovers for firm productivity. To compare the magnitude of public and private

spillovers, I turn to a second identification strategy. I exploit the random allocation of patent

applications to patent examiners of varying leniency to create measures of exposure to technology

spillovers driven uniquely by this ‘patent lottery’. This instrument is inspired by earlier work on

judge leniency (Kling, 2006) and has been extensively used in the innovation literature (Gaule,

2018; Sampat and Williams, 2019; Feng and Jaravel, 2020). In contrast to previous studies, I use

the patent lottery to instrument a firm’s exposure to spillovers rather than its own patent grant

decision. The identification assumption is that the variation in leniency at the examiner level is

not correlated with the outcomes of firms that benefit from the spillovers of the reviewed patents.

Previous evidence on the quasi-experimental assigment of applications to examiners suggest that

this assumption is likely to hold (Lemley and Sampat, 2012), and I find support for it in the data.

The advantage of the patent leniency instrument is that it allows me to estimate the causal impact

of both public and private spillovers within the same econometric setting.

Finally, I find that the large decline in US public R&D matters quantitatively for aggregate TFP

growth and inequality between firms. I build a general equilibrium, heterogeneous agent model

1I follow the latest literature in applied econometrics to implement this SSIV design (Adão et al., 2019;
Borusyak et al., 2022) and use conservative, exposure-robust standard errors that take into account the
correlation of firms’ errors exposed to a similar set of federal agencies.
2Kwon et al. (2022) provide evidence that inequality between American firms, in sales and assets, has been
increasing for most of the 20th century, in particular since the 1960s.
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of growth in the spirit of Luttmer (2007) and Jones and Kim (2018) to quantify the macroeconomic

implications of the decline of public R&D on firm productivity growth and the rise of superstar

firms. In the model, R&D is performed by firms and by the government who levies taxes on firm

profits to fund its R&D expenses. The model yields two key insights. The first is that aggre-

gate productivity growth increases in the strength of spillovers while inequality between firms

is decreasing in the strength of spillovers. The second insight is that there is a unique growth-

maximizing corporate tax rate for growth. This tax rate is high enough to support the funding of

public R&D but low enough to not discourage private innovation by firms. To go from my mi-

croeconomic evidence to general equilibrium conclusions, I use the elasticities obtained from my

two empirical strategies to calibrate the model. The model suggest that the large decline in public

R&D in the US in the second half of the 20th century may account for a third of the observed de-

cline in aggregate TFP growth since the 1950s and a third of the rise in inequality of productivity

between firms.

Related work. This paper relates to three strands of literature; the first of which is the voluminous

set of applied papers on the importance of technology spillovers for innovation and productivity.

Since the review of empirical studies by Griliches (1992) at least, it is recognized that spillovers

from firms’ R&D are common and economically significant. Estimates of the wedge between the

private and social returns of corporate R&D suggest that social returns are two to four times as

big as private ones (Bloom et al., 2013). The literature has mostly focused on spillovers from firms’

own R&D to other firms,3 but recent work has shown that spillovers from the public funding

of corporate R&D are also substantial. In two important contributions to this line of research,

Azoulay et al. (2019) and Myers and Lanahan (2022) exploit quasi-experimental variation in fed-

eral agency funding rules to estimate the impact of public R&D grants on firms’ own innovation

and spillovers. Both studies conclude that spillovers from public R&D grants to firms are large:

firms typically capture at most half of the returns of their own innovation.4 This paper brings

complementary evidence about the importance of public spillovers and extends this line of work

in four main ways. First, I directly compare the impact of public and private spillovers within a

unified econometric framework. Second, I go beyond specific agency programs and time periods

by exploiting variation in spillovers across all patent-filing agencies and, for the historical SSIV,

3Notable exceptions include Jaffe (1989), Belenzon and Schankerman (2013) and Bergeaud et al. (2022a) who
study knowledge flows from academia to businesses, as well as Moser et al. (2014) and Iaria et al. (2018),
who study spillovers within academia.
4Azoulay et al. (2019) find that a $10 million increase in NIH funding generates 1.4 patent in the medical
area targeted by the grant. But, importantly, it generates 2.2 additional patents in different areas (estimates
from columns 4 and 5 of table 8, p. 145 in Azoulay et al., 2019). Myers and Lanahan (2022) confirm this order
of magnitude: firms capture only between 25 and 50% of the patent-based value of their publicly-funded
R&D.
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variation from 1945 to 2010. Third, I use publicly-funded R&D in its broadest sense, regardless of

who performs it. In other words, firms, universities and government labs are all included among

the performers of publicly-funded R&D in my setting.

Moving from the micro-empirical evidence to the aggregate level, this paper also relates to

the macro literature on idea-based growth, which has highlighted the central role of knowledge

spillovers in driving aggregate growth (Romer, 1990; Jones, 1995; Jones and Williams, 1998; Lu-

cas, 2009).5 The central tenet of these models is that ideas are special inputs into a production

function: they are non-rivalrous, and as such give rise to increasing returns (Jones, 2022). I show

that while ideas generated by public or private R&D are both non-rival, they differ in how ex-

cludable they are: public R&D ideas are less excludable and therefore less appropriable. This lack

of appropriability stems in large part from the fact that public R&D ideas are more fundamental.

To my knowledge, this paper is the first to document this difference in appropriability between

public and private R&D.6 This point has important consequences for ideas-based growth models:

public and private R&D need to be modelled separately because the spillovers they generate dif-

fer. I use my estimated elasticities to calibrate a model of aggregate growth with spillovers. In

doing so, I provide a micro-to-macro framework that bridges the gap between the productivity

literature on spillovers and macro models of growth. A contribution of this paper is to provide a

tight theoretical link between idea-based models of growth and the econometric framework used

by micro-empirical studies of firm growth. In addition, this work speaks to a few recent macroe-

conomics papers showing that reduced spillovers from market leaders to followers can worsen

inequality between firms (Akcigit and Ates, 2019; Olmstead-Rumsey, 2022). My results suggest

that reduced spillovers from public R&D to small firms are another potential explanation of the

rise in firm inequality.

Finally, the present work contributes to the burgeoning literature about the role governments

may play in driving productivity growth, either through demand shocks (Ilzetzki, 2022; Antolin-

Diaz and Surico, 2022; Belenzon and Cioaca, 2022) or through large R&D expenditures (Kantor

and Whalley, 2022; Fieldhouse and Mertens, 2023; Moretti et al., 2023).7 My work directly relates

to the second set of papers and complements them. While these papers focus on public R&D

expenditures, I directly compare the potency of public and private spillovers for productivity

growth. Moreover, I am leveraging detailed firm-level, balance-sheet data to test a wide array of

5See Buera and Lucas (2018) for a review of models of idea flow and growth. See Jones (2022) for a semi-
endogenous growth perspective on the literature.
6See Akcigit et al. (2020) for a related point about basic versus applied R&D and Trajtenberg et al. (1997) for
a comparison of university and corporate patents.
7In addition to academic papers, several general public books have collected case studies to make the case
for a more central role for the government in pushing innovation forward. See for instance the books by
Mazzucato (2015), Janeway (2018) and Gruber and Johnson (2019).
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firm outcomes and uncover important treatment effect heterogeneity of public spillovers across

the firm size distribution. Kantor and Whalley (2022) and Fieldhouse and Mertens (2023) con-

duct their analyses at the county and national levels, respectively. Moretti et al. (2019) provide

some firm-level evidence that businesses that receive government R&D increase their own R&D

spending (and eventually experience higher productivity), but they do not investigate the role

that technology spillovers play in this process.

The paper is structured as follows. In section 2, I describe the novel dataset of publicly listed

firms matched to patents that I use, before documenting stylized facts about patents funded by

public R&D in section 3. Section 4 describes my two empirical IV strategies and their results are

discussed in section 5. I present a model of growth through heterogenous firms and spillovers in

section 6. The results of the calibration exercise are further discussed in that section. Section 7

concludes. Additional results, data description and proofs are relegated to the appendices.

2. DATA

Studying technology spillovers at the firm level over 70 years is demanding in terms of data.

Previous studies have been limited by panels of firms matched to patents that extend for at most

35 years.8 This is inadequate to study the relevance of spillovers for growth from 1950 to 2020,

the period during which public R&D has declined in the US. In this section, I describe the panel

of publicly listed firms matched to patents that I assembled with a co-author (Dyèvre and Seager,

forthcoming), and that I use in this paper. This panel spans seven decades and is the longest of its

sort, doubling the time coverage of previous efforts (Arora et al., 2021b). Importantly, it dynami-

cally re-assigns patents to their current owners following corporate restructuring events (mergers,

acquisitions, de-listings and spinoffs). The data is freely available to use for academic purposes

and can be downloaded here: github.com/arnauddyevre/compustat-patents. A more detailed

description of the data is available in Appendix B, and in Dyèvre and Seager (forthcoming).

Firm characteristics. Annual firm-level data come from Compustat North America, covering all

firms publicly traded on a North American exchange. My final sample of firms consists of obser-

vations with employment, capital investment, operating income before depreciation and 4-digit

SIC sectors. Using data on publicly listed firms has two advantages and one limitations. On the

positives side, using Compustat data enables me to create a decades-long panel of firms. Secondly,

Compustat has been extensively used in the innovation literature (Bloom et al., 2013; Arora et al.,

8Patent data alone cannot be used to study the impact of spillovers on firms because it lacks information on
firm outcomes such as sales, employment and productivity. To my knowledge, the longest panels used to
study spillovers are those created by Arora et al. (2021a) which runs from 1980 to 2015, Lucking et al. (2019)
from the early 1980s to 2006 and Akcigit and Kerr (2018) from 1982 to 1997.
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2021b), which enables one to compares the results of the present paper to earlier work. A limita-

tion of this data is that Compustat firms are not representative of the entire American economy.

They are typically much larger than other businesses. The findings of this work, and in particular

the results about firm heterogeneity, need to be taken with this caveat in mind. Nevertheless, con-

clusions drawn from this work can be informative about the wider economy due to the economic

importance of Compustat firms in the aggregate economy. Estimates of their importance show

that they account for 26% of US employment and 44% of its GDP (Dinlersoz et al., 2018).

Patents. Patent information comes from the US Patent and Trademark Office (USPTO). For patents

granted after 1975 and their citations, the data comes from Patentsview, the USPTO prime portal

for patents granted from 1976 onwards. A key feature of Patentsview is that assignees, locations

and inventors’ names are carefully disambiguated. For instance, patents assigned to ‘IBM’ and

‘International Business Machines’ are correctly assigned to the same firm. For patents granted

before 1975 and their citations, I use the data scraped from the original patents files by Fleming

et al. (2019), henceforth FGLMY. Lastly, I use historical CPC technology classes at the time of filing

from Bergeaud et al. (2022b) and the USPC technology classes from PatentsView.

Patent data is an imperfect measure of innovation and appendix B elaborates on these limita-

tions. However, it has been shown that patent counts correlate strongly with innovative inputs

(R&D expenditures, number of inventors and scientists), other measures of innovative outputs

(inventions rated by scientists) and proxies of firm performance (productivity, etc.). Moreover,

while not all firms file patents, patents are a way to protect intellectual property that is extensively

used by large firms (Mezzanotti and Simcoe, 2023) like the publicly listed firms in Compustat.

Following the literature, I rely on patent data to quantify innovative outputs and on the overlap

between patent technologies a to measure exposure to innovation.

Matching firms to patents. No unique firm identifier can serve as a joint between the balance-sheet

data in Compustat and the USPTO patent data. Linking firms to patents must thus rely on match-

ing company names to patent assignee names. Dyèvre and Seager (forthcoming) use a combi-

nation of string cleaning/homogenization, automated string matching, careful manual matching

and reliance on the previous efforts of Arora et al. (2021b) to match firms to patents. They then rely

on data from SDC Platinum, the Center for Research and Security Prices (CRSP), WRDS Company

Subsidiary Data, historical data in Lev and Mandelker (1972) and manual searches to introduce

dynamic reassignments of patents across firms, over time. Dynamic reassignment of patents is es-

sential to obtain an accurate picture of firms’ innovativeness at any point in time: patents indeed

change hands over time through mergers, acquisitions and sales of subsidiaries.

The final matched dataset consists of 9,961 unique firm identifiers (‘gvkeys’) observed between

1950 and 2020 matched to 3.1 million unique patents. This is the most comprehensive dynamic
6

https://patentsview.org


dataset of Compustat firms matched to patents of its kind. Only a subset of these patents and firms

are used in this paper because I need data on firms over at least 10 years to calculate my outcomes

of interest and firms’ exposures to spillovers. Appendix B and Dyèvre and Seager (forthcoming)

provide more details about the matching procedure and compares the final dataset with existing

alternatives such as Kogan et al. (2017) and Arora et al. (2021b).

Government-funded innovation. I define patents to be financially supported by the US government

if they are assigned to a government entity (‘direct assignee’) or if the non-government assignee

of the patent has received federal funding for the development of the innovation (‘supported

assignee’). Direct assignees are readily identified in PatentsView (post-1975) and FGLMY (pre-

1975).

FIGURE 1. Example of a statement of gov-
ernment interest mentioning NASA – patent
#5,992,090

For supported assignees who are not gov-

ernment agencies, I use two data sources to

identify government support. For patents filed

after 1980, I rely on the ‘government interest’

variable created by PatentsView. The variable

is derived from the text of patents whose as-

signees are required to disclose if they have re-

ceived federal funding that contributed, even

partially, to the innovation. An example of

such disclosure is included in Figure 1, which

shows an excerpt from a NASA-supported

patent. This requirement comes from the

Patent and Trademark Law Amendments Act of 1980, also known as, and henceforth, Bayh-

Dole Act. It covers grants to firm, to universities and to NGOs, as well as procurement con-

tracts between the government and any private or academic party. For patents granted before the

Bayh-Dole Act, I use the government interest tag from Fleming et al. (2019). This tag comes from

machine-read patent text where acknowledgement of government funding is reported.

Recent work by Gross and Sampat (2024) has shown that inferring government interest from

the patent text or the Bayh-Dole disclosure statements, as I do above, can miss some relevant

patents. In particular, ‘license’ patents which are funded by the government but assigned to non-

government entities can be poorly covered, especially in the the 1950s and 1960s. I therefore

complete the PatentsView and FGLMY datasets by Gross and Sampat (2024)’s government patent

register.

Patent examiners’ leniency scores. To create the examiner leniency instrument, I use data on all

patent applications filed with the USPTO from 2001 to present days. The USPTO provides data
7
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on applications through its Patent Examination Research Dataset (PatEx), which includes infor-

mation on special technology classes used for the allocation of applications to examiners called

‘art units’. Crucially, this data contains the names of the patent examiners that I use to uniquely

identify them.9

Department and Agency-specific funding. Historical data on R&D outlays by US agencies comes

from the budget tables of the White House’s Office for Management and Budget (OMB). This

dataset needs to be completed because some departments that have historically funded R&D ac-

tivities are not included in the White House R&D tables, like the Department for Veterans Affairs

through its ‘VA Technology Transfer Program’ for instance.10

I fetch the additional R&D budgets of agencies not covered by the historical tables by clean-

ing a dataset of all government outlays available in the supplementary materials provided by the

OMB, known as a the Public Budget Database. I isolate the R&D-specific outlays by performing

a substring search among the ‘Bureau Name’ and ‘Account Name’ fields; I look for variations

of substrings such as ‘INNOVATION’, ‘RESEARCH’ and ‘TECHNOLOGY’. When data on R&D

funding is available both in the series provided by the historical tables and in the detailed outlays,

there is a very good overlap between the two series, as can be seen in panels A.7-A.9 in the Ap-

pendix. When both series are available, the series from the historical is used. Finally, I manually

collect R&D data for the Department of Veterans Affairs and the Small Business Administration

from Congressional Research Service reports. Values are deflated and expressed in 2020 dollars.

3. STYLIZED FACTS ABOUT PUBLIC R&D PATENTS

In this section, I use all 8.2 million patents granted from 1976 to 2020 by the USPTO to document

three key characteristics of public R&D patents: (1) they rely more on science, (2) the knowledge

they encode tends to be more ahead of its time, and (3) they generate more spillovers, especially to

smaller firms.11 These differences with privately-funded patents have important consequences on

the frequency and strength of spillovers. While a complete investigation into the causes of these

differences is beyond the scope of this paper, I briefly discuss plausible reasons at the end of the

section.

9The data is freely available on the USPTO website (www.uspto.gov/ip-policy/economic-
research/research-datasets/patent-examination-research-dataset-public-pair). Miller (2020) provides
a comprehensive overview of the data.
10The Department of Veterans Affairs is active in financing and commercializing technologies that can ben-
efit Veterans’ well-being. Most of the patents financed by the Department of Veterans Affairs are medical
patents and are typically jointly filed with inventors in academia (Department of Veterans Affairs, 2022).
11The controls I use in my specifications come from data only available in the post-1975 tranche of patent
data. I therefore discard the 1950-1975 patent data for the analysis of this section.
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To test for differences between public R&D and private R&D patents, I regress some outcomes

of interest yi at the patent level, on an indicator variable equal to 1 if a patent is publicly-funded i.e.

assigned to a ‘direct assignees’ or a ‘supported assignee’, and a comprehensive array of controls Xi.

publicly-funded patents can be the result of R&D performed in government labs, in universities,

in firms or any combination thereof provided that at least part of the R&D money came from

public sources. Formally, in the figures below I report the β̂ coefficients and their 95% confidence

intervals from the following regression, for a gradually more comprehensive set of controls Xi:

yi = α + β × 1[patent i is publicly-funded] + Xiγ + ε i (1)

Evidently, the β̂ coefficients cannot be interpreted as causal. This exercise is however informative

about the differences between public and private R&D, as seen through the lens of patented inno-

vations. Heterogeneity results across years, performer and funders of public R&D are presented

in Appendix C.2, along with robustness checks using alternative dependent variables.

3.1. Fact 1 - Public R&D patents are more reliant on science. The most important difference be-

tween publicly-funded patents and privately-funded ones is in how much more reliant on science

public patents are. To measure a patent’s reliance on science, I follow the common practice in

the innovation literature to use patent citations to proxy for knowledge spillovers.12 Reliance on

science is defined here as the share of a patent’s backward citations directed to the scientific liter-

ature. Previous empirical work has shown that citations to the scientific literature are correlated

with actual reliance on science in industrial R&D. For example, using the Carnegie Mellon Sur-

vey of the Nature and Determinants of Industrial R&D, Roach and Cohen (2013) document that

there is a strong correlation at the industry level between the share of patent citations directed to

scientific publications and the extent to which research lab managers report relying on science.

To calculate the share of citations to science, I rely on data compiled by Marx and Fuegi (2022)

on non-patent citations. Using specification (1), I find that public R&D patents tend to rely more

on science than private patents. The results are shown in Figure 2a, where I report point estimates

and 95% confidence intervals for the β coefficients across a suite of specifications with succes-

sively more exhaustive controls. In my fullest specification, I control for 700 CPC patent class

dummies, the productivity of inventors, the productivity of the entity who owns the patent and

12Patent citations can be a noisy proxy for knowledge spillovers. But they have been shown to be strongly
associated with actual spillovers, as reported in surveys by the inventors themselves. Jaffe et al. (2000), for
instance, use a survey of inventors to show that patent citations often capture direct communications be-
tween inventors, word-of-mouth and the simple act of reading the cited patent. Moreover, citation patterns
also correlate strongly with the movements of scientists between assignees citing each other’s patents in my
data. This suggests that one of the key channel through which the exchange of ideas operate–the mobility
of inventors–is captured to some extent by citation flows. See section B for a discussion about the merits
and drawbacks of relying on patent citations to measure spillovers.
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the estimated total wage bill of inventors. Standard errors are clustered by year of application

and by patent class. I find that only 6% of citations made by private R&D patents are directed

toward scientific papers, on average. In contrast 22% of citations made by public R&D patents are

(+267%). Appendix C.2 shows that this difference is stable over time and it persists even within

R&D performers i.e. firms’ and universities’ innovations are more reliant on science when their

funding is public than when their funding is private.

One interpretation of this greater reliance on science is that publicly-funded innovations tend

to use knowledge that is more basic or more fundamental. Basic research is defined by the

OECD ’Frascati manual’ as ’experimental or theoretical work undertaken primarily to acquire

new knowledge of the underlying foundations of phenomena and observable facts, without any

particular application or use in view’ (2015, p. 45). This definition is used by many public sci-

ence agencies in their R&D surveys, including the US National Science Foundation. While there

are both basic and applied pieces of scientific work, it is reasonable to assume that science articles

tend to be more detached from practical applications and commercialization of ideas than patents,

whose purpose is indeed to protect the profits of an invention. By relying on more fundamen-

tal knowledge, publicly-funded patents may themselves embody more fundamental knowledge.

Two pieces of evidence support this interpretation. First, in appendix C.2, I also show that the

number of independent claims made by publicly-funded patents is greater, on average. Patent

claims delineate the scope of an innovation and establish which property rights the assignee is

entitled to (Matcham and Schankerman, 2023). The larger this number, the least specific an inno-

vation is. The number of independent claims can therefore be seen as a measure of the generality

of a patent. Because basic innovations have applications across many fields, a patent’s generality

can be seen as a manifestation of its basicness. Second, the breakdown of public R&D across basic

research, applied research and development is very different from that of private R&D. Out of

each dollar invested in public R&D by the American government in 2020, 33 cents were dedicated

to basic research and 36 were dedicated to development. The remaining 31 cents were used to

fund applied research. In contrast, a dollar of private R&D in 2020 funded mostly development

(78 cents) and very little basic research (7 cents). This split is shown in the figures of panel A.10 in

the Appendix. I observe the consequences of this divergence of focus in the patent data.

3.2. Fact 2 - Public R&D patents are more impactful. Secondly, to assess a patent’s technolog-

ical importance, I introduce a new metric of impact. I measure a patent’s technological novelty

by the number of years that separates its year of application from the date when it is reclassified

into a newer patent class. Disruptive innovation, by definition, is hard to classify using existing

taxonomies: patents that are re-classified into a newer, more relevant patent class after its intro-

duction can therefore be thought as encoding knowledge that was ‘ahead of its time’. I study the
10



dynamic reassignment of patents to classes using the evolving US Patent Classification System

(USPCS). It consisted of more than 450 classes and was in use from the early 19th century until

2013.13 The USPTO needs to keep an up-to-date classification of technologies in order to assess

the claimed novelty of patent application against existing prior art. Because of its important le-

gal role, the USPTO had strong incentives to keep this classification relevant to the technological

landscape of the time. After the introduction of a new patent class, all previously filed patents

that are better described by the new class are ex post re-classified into the more relevant class. For

instance, a patent filed in 1996 and protecting a technology that is relevant for the development of

self-driving cars would be re-classified from, say, ”Data processing: Vehicles, Navigation, and Rel-

ative location” (class 701) to ”Data processing: Artificial Intelligence” (class 708) in 1998, when the

latter is created. This patent would have contributed to open a new technological field two years

before this field is recognized by the USPTO. The list of USPC classes thus offers an interesting

vantage point into the development of new knowledge. Figure 13 in the appendix shows the cu-

mulative count of USPC patent classes over time and indicates when some selected technologies

are introduced.14

As shown in Figure 2b, I find that publicly-funded patents tend to be 6% more likely to be

‘ahead of their time’ than privately-funded patents (baseline probability with full controls: 0.31),

even after controlling for the R&D effort, as proxied by the wage bill of innovators, that goes into

the creation of the patent. Looking at the intensive margin, I restrict the sample to patents that are

ahead of their time and compute the difference in average years between the typical public R&D

patent and the typical private R&D patent. I find that public R&D patents are typically 1.25 more

years ahead than private patents (+19%). This result is reported in the Appendix. When using

other common measures of impact such as forward citations and the Kelly et al. (2021) metric of

breakthrough patents, the results also suggest that publicly-funded patents are more impactful,

even after controlling for R&D effort (see Appendix C.2).

3.3. Fact 3 – Public R&D patents generate more spillovers. The last fact I document pertains

to the breadth of spillovers from public R&D. I find that public R&D patents tend to generate

spillovers across a wider range of patent classes. The excess number of classes across which a

public R&D patent is cited is displayed in figure 2c. After controlling for many observables, pub-

lic R&D patents tend to be cited by 0.5 more classes, from a baseline of 2.38 for the average private

13The Cooperative Patent Classification (CPC) system, jointly developed by the USPTO and the European
Patent Office, replaced the USPC in 2013. While the CPC is also regularly updated, its late introduction
makes it less interesting to study patent re-classification over the long term.
14Raw data stored at the following link arnauddyevre.com/files/USPC classes years established.pdf. Csv
file available at arnauddyevre.com/files/timeline detail classes.csv
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FIGURE 2. Stylized facts about public R&D patents

Notes: The figures show the β coefficients and their 95% confidence intervals from specification 1. The level
of observation is a patent and standard errors are clustered at the year×patent class level. The dependent
variable is, from top to bottom, the share of citations made by the focal patent to scientific literature (A), the
probability that a patent is ‘ahead of its time’ (B), the number of CPC patent classes citing the focal patent
(C) and the share of small firms among the assignees citing the focal patent (D). The construction of the
variables ‘inventor productivity’, ‘assignee productivity’ and ‘wage bill’ is described in Appendix C. The
sample sizes are NA = 8.2m, NB = 8.2m, NC = 5.2m and ND = 5.2m. In the ‘ahead of time’ regressions, I
am not controlling for years and patent class jointly: the overlap between historical USPC classes and CPC
classes used as controls is high and controlling for CPC classes and year leaves very little variation in yi.

patent (+22%).15 To disentangle the effect of the breadth of a patent from that of its technological

impact, I also control for the log number of total citations received by the focal patent. The wide

applicability of the knowledge encoded by public R&D patents is likely to stem from them be-

ing more fundamental, as documented in fact 1. This finding has important implications for the

appropriability of public research, which appears more limited than that of private research, and

will be a key driver of the dynamics of the model.

15This finding echoes that of Babina et al. (2023) who find that patents funded by federal grants are more
‘general’. Generality is defined as 1 − ∑j c2

ij where cij is the share of citations to patent i coming from class
j.
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Moreover, public R&D patents generate spillovers to a different distribution of firms than pri-

vate R&D patents. In panel 2d, I report estimates from regression (1) where yi is the share of

citations received by patent i from ’small’ firms, defined as firms with fewer than 500 employees.

The data on firm size comes from patent applications, where firms are asked to report their size

in order to determine the patent renewal fees they need to pay. Smaller firms face lower fees.

Patents funded by public R&D money appear to be more likely to be cited by smaller firms: after

controlling for the full suite of controls, I find that the share of small-firm citations to public R&D

patents is 14 percentage points higher than for private R&D patents (+62%) suggesting that their

technology spillovers are comparatively more relevant for smaller firms. This evidence is consis-

tent with summary statistics reported by Azoulay et al. (2019), who find that small assignees (i.e.

with fewer than 500 employees) are more likely to cite patents linked to NIH-funded research.16

One plausible interpretation of this finding is that smaller firms lack the resources and the in-

centives to perform basic research, unlike large companies such as DuPont, General Electric, IBM,

Xerox or AT&T through Bell Labs which are prominent examples of firms with once dynamic

basic research labs. Another interpretation is that university spinoffs through which academic

researchers can develop commercial applications of their research have become more common,

in particular after the passing of the 1980 Bayh-Dole Act that facilitated university patenting and

licensing. Academic startups, because of their more agile way of doing business and close ties

to university research, may have a comparative advantage in generating inventions, while es-

tablished firms are better at exploiting innovations through development and commercialization

(Arora et al., 2018).

3.4. Summary and discussion. In summary, R&D funded by public money tends to be more of

a public good: it is more impactful (as measured by citations, its ability to open new fields), more

fundamental and less appropriable. These differences hold irrespective of who is performing the

R&D, whether it is a university or a firm.17

Why is publicly-funded R&D different? Both the actions of the funder of public R&D (i.e. the

government) and those of researchers receiving public funding offer explanations. Firstly, public

R&D money tends to be much more heavily invested into ‘basic’ research, as can be seen in the

histograms of panel A.10 in the Appendix. This difference in the type of research being funded has

consequences on the types questions being investigated, and eventually on the type of innovations

16Table 2, p. 133.
17Importantly, the stylized facts highlighted here are not a comparison of university and government lab
patents versus corporate patents. Previous research like Trajtenberg et al. (1997) has for instance highlighted
the relevance of the distinction between corporate and academic patents in determining the basicness and
appropriability of patented technologies. In contrast, the results presented in this section and in Appendix
C.2 reveal that the source of R&D funds, even within a university or a firm or a government matters for the
impact, generality and appropriability of innovation.
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being patented. Secondly, the incentives of researchers doing publicly-funded R&D may differ.

Inventors doing publicly-funded research may be driven by prizes, publication-based promotion

procedures and the satisfaction of having one’s ideas widely used. See for instance the review

by Williams (2012) on the effect of prizes in inducing innovation, Reschke et al. (2018) or Jin et al.

(2021) for causal assessments of the importance of prizes in steering scientific research and Brunt

et al. (2012) for their effect in industrial innovation. This interpretation echoes the findings of

Babina et al. (2023), who use administrative data on university researchers matched to the funding

composition of their grants (public or private) and find that researchers alter the trajectory of their

research when their funding gets dominated by private funds. Their research becomes less open,

less basic, more appropriable by the funder and of lesser academic quality.

Is it due to selection? Researchers doing public R&D may be more conservative when deciding if

the fruit of their research is worth patenting: they may be less interested in the money they can

get from filing a patent for instance. As a result, the low impact, high appropriability and low

basicness of private patents may simply be driven by a large volume of ‘junk’ corporate patents

that do not exist in universities and government labs’ patent portfolios. While this hypothesis is

inherently hard to test, some evidence suggest that this may not be the case. Firstly, the conversion

rate of patent applications into granted patents are similar for patents funded by private R&D and

those funded by public R&D. Public applications are only 3 percentage points more likely to be

converted than private applications (baseline: 83%). Secondly, when looking a citation-weighted

patents, one diminishes the risk that the average quality of private patents is dragged down by

low-quality patents. Only blockbuster patents, which are arguably very likely to clear the quality

threshold for grant, matter in this exercise. When running the same analysis weighting patents by

citations, the conclusions remain the same (results not reported). Also, looking at the distribution

of patent citations, one finds an almost identical distribution for the bottom 90% of public and pri-

vate patents. Thirdly, one may argue that ‘junk’ patents also exist in the public R&D portfolio.18

Finally, the regressions above are controlling for the effort put into each patent by including prox-

ies of inventor’s productivities, assignee productivities and the total wage bill of inventors on the

patent. This creates comparisons between patents which have benefited from the same amount of

research. Overall, there is very limited evidence that the differences between public and private

R&D patents documented in this section are driven by different selection processes of innovations

into patents.

18Some agencies like NASA have an explicit mandate to facilitate the translation of NASA’s research into
civilian development (through its Transfer Technology program and yearly Spinoff publication). While
some of its patented innovations have had successful applications in civilian domains (such as NASA’s
research into LED light), others are simply using the patent system as a way to make these innovations
known to the public and/or facilitate spillovers. See for instance the lunar module landing pad patent
(#3,175,789) or this quite imaginative ‘space spider crane’ (#4,738,583)
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4. RESEARCH DESIGNS

The previous section has shown that privately-funded R&D is different from publicly-funded

R&D. This section lays out the econometric approaches I use to investigate the consequences of

these differences for spillovers, firm growth and innovativeness. I first ground my estimating

equation in the theory of knowledge production functions commonly used in empirical studies of

spillovers (Griliches, 1979; Acs et al., 1994), before discussing endogeneity issues. I then describe

the two quasi-experimental IV strategies I use to estimate the causal impact of spillovers from

government-funded research and privately-funded research.

4.1. From theory to data. To motivate the equation I am estimating, it is helpful to think of firms

as being endowed with the following productivity process, which is at the heart of the model

presented in section 6:

Żit = Eit
ϕΓit with Γit :=

(
∏

a
Psiat

at

)γ(
∏

f
Pf t

si f t

)ε

(2)

where Eit is the (flow) R&D effort of firm i at time t, ϕ is the elasticity of productivity growth

(Żit) to R&D expenditures and Γit captures the spillovers to which the firm is exposed. Departing

from previous research, I define Γit as being a composite term capturing spillovers from publicly-

funded and privately-funded R&D that i benefits from. It is made of two Cobb-Douglas aggrega-

tors, one for each type of spillover: public spillovers come from agencies indexed by a and private

spillovers come from firms indexed by f . Pat and Pf t are the (flow) patents of agency a and firm f ,

respectively. For each firm i exposed to patents funded by agencies, I remove from Pat the patents

that are funded by a but filed by the focal firm i, if there are any.19 In other words, focal firms are

not exposed to their own innovation in my setting.20 Correspondingly, i is not included in the set

of spillover-generating firms indexed by f , although it may generate spillovers to other firms.

The shares siat capture the importance of agency a’s knowledge production in firm i’s spillover

aggregator. They sum up to 1 within each type of spillovers and can therefore be interpreted as

follows: si,NASA = .25 means that variation in NASA’s knowledge mediates 25% of the variation

in firm i’s exposure to publicly-funded spillover and γ × .25 of the variation in its productivity

growth. Shares of exposure to privately-funded R&D, si f t, are defined analogously as the impor-

tance of firm f in firm i’s private spillovers. Importantly for my purpose, and in contrast with

previous work, I allow the elasticity of productivity to exposure to public R&D, γ, to be different

from that of private R&D, ε.

Taking logs, one can estimate equation (2) as:

19Pat is therefore a slight abuse of notation as it should also be indexed by i.
20The R&D term in equation (2) already captures a firm’s past innovative effort.
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∆zit = ϕ eit︸︷︷︸
own ln

R&D flow

+γ ∑
a

siat pat︸ ︷︷ ︸
exposure to

public R&D patents

+ε ∑
f

si f t p f t︸ ︷︷ ︸
exposure to

private R&D patents

+ϵit (3)

where lowercase variables are the logs of capital letter variables. In what follows, I discuss the

construction of the exposure variables. I also discuss the timing of measurement of the various

empirical elements of equation (3). I have economized on notation here by indexing all variables

by t − 1 and t, but the timing of spillovers relative to their impact on productivity growth is

important and is discussed later.

Shares of exposure. In line with previous work in the spillover literature, I calculate the shares

of exposure siat following the methodology pioneered by Jaffe (1986) and subsequently used by

Bloom et al. (2013) and Bloom et al. (2020). The Jaffe proximity metric relies on the overlap in

technologies between two patent assignees to situate them in technology space. The more similar

the distributions of patents of two assignees across technologies are, the closer these assignees

will be according to the Jaffe metric and the more likely they will be to benefit from spillovers

emanating from each other’s innovations. Formally, I define Pi := (Pi1, Pi2, . . . , PiN) as the (1 × N)

row vector of shares of patents of firm i across the N technology classes in a given period. Time

subscripts are omitted for readability. For instance, if a firm i holds only two patents, one in

the ‘Soilless cultivation’ class (4-digit CPC class: A01G) and one in ‘Devices for administering

medicine orally’ (A61J), then its technology signature vector will have 0 entries everywhere except

for Pi,A01G = Pi,A61J = .5. Pa is defined analogously for agency a. The proximity between i and a is

defined as the uncentered correlation between i and a’s technology shares of patents:

s̃ia :=
PiP′

a√
PiP′

i

√
PaP′

a

∈ [0, 1] (4)

s̃ia ranges from 0 (no overlap in technology signature between i and a) to 1 (identical shares

of patents across classes). I calculate these exposure weights using patents over a period of 5

years, starting 5 years before firms’ outcomes are observed. Therefore, to estimate the impact of

spillovers on a firm’s sales growth from t to t + 5, exposure weights are calculated using patent

data from t − 5 to t. To define the share of exposure to a particular agency, I normalized the

proximity metrics s̃ia such that they sum up to 100% across agencies i.e. sia :=
s̃ia

∑a′ s̃ia′
. These

shares of exposure are interacted with the log of patent production by agency a, pat, to create the

change in exposure to public spillovers. I define p f t and s f t analogously, as the patent production

by firm f at time t, and the shares of exposure to firms indexed by f , respectively. I show in Figure

12 in Appendix B.5 that shares of exposure are very stable over time: the correlation in shares of
16



exposure to public agencies measured over one five-year interval with shares in the next five-year

interval is very high for the majority of shares, which are between 0 and .2.

An alternative to using technological overlap is to instead rely on patent citations. This ap-

proach however has several drawbacks. The first is that patent citations are sparse; they only

represent a tiny sliver of the knowledge base used in the creation of an innovation. The second

is that patent citations can be a noisy signal of knowledge flows. Third, there are some solid mi-

crofoundations behind the use of the technological overlap as a measure of knowledge flow (see

Bloom et al. 2013). Lastly, this makes my approach comparable to the literature.

Timing. Importantly, the timing of the dependent and independent variables in specification (3)

needs to be informed by empirical evidence about the delays taken by spillovers to materialize. In

particular, one must take a stand on the time it takes for an idea generated by an upstream knowl-

edge producer (either a private firm or a public agency) to be converted into profitable product and

services by downstream firms. This dynamic aspect of spillovers is, surprisingly, rarely discussed

in microeconomic studies of spillovers. The evidence on the so-called ‘invention-innovation’ lags

comes from a small literature that has used surveys, case studies, as well as bibliometric data

on patents and academic papers. Its findings suggest that lags of around five years between the

dissemination of an idea–e.g. through a patent or paper publication–and the introduction of a

product or service that builds on it are common, with significant heterogeneity across industries.

Mansfield (1991) for instance surveyed R&D executives in American manufacturing firms who

used extramural research findings in the development of their products or processes. The mean

reported lag between the publication of a finding and the first commercial introduction of a prod-

uct using it was 6.4 years. There is some heterogeneity across industries though: pharmaceutical

firms experience the longest lags (10.3 on average), firms in ‘Instruments’ experience the shortest

(4.2). Similarly, the National Science Board in the US reports that the mean time between the first

conception of an innovation and the innovation itself is 7.2 years, for a sample of 500 academic

innovations used in product or processes by American firms between 1953 and 1973 (National

Science Board, 1975).21 Mowery et al. (2015) present several case studies of academic innovations

that have been successfully commercialized and offer a detailed description of their patent-to-

product timelines. The co-transformation process, an important application of modern genetics,

took between four and seven years to be used in biomedical firms’ productions. The commer-

cial development of LED lights using Gallium nitride–a semiconductor emitting light over a wide

spectrum of colors–took between two and seven years. The glaucoma drug Xalatan took between

21The report studies 500 ‘major’ technological innovations defined as ‘new products or processes embody-
ing a significant technological change’. They include technologies like nuclear reactors, lasers and oral
contraceptives. Interestingly, these lags tend to vary by country: the average is 3.6 years in Japan, 5.6 in
west Germany, 6.3 in the UK and 7.4 in France (table 1-13 and figure 1-13 in the NSF report).
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FIGURE 3. Timeline
Notes: The figure describes the timeline used to construct the data that I rely on for the estimation of (3). It
is informed by the literature on the ‘invention-innovation’ lag reviewed in the main text of the paper. It also
relies on the empirical exploration of the lag between funding shocks and patent creation shown in Figure
4.

nine and 14 years.22 Another piece of evidence comes from Ahmadpoor and Jones (2017) who use

the shortest lag between the publication of a paper and the publication of a patent that cites it as a

measure of spillover delay. They find an average delay of 6.7 years.

Taken together, the findings of this literature suggest that, in spite of the heterogeneity in lags,

spillovers from inventions to commercialization typically take between five and 10 years. Using

patent production of the spillover-generating entities at t, and differences in the outcomes of in-

terest of firms from t to t + 5 (or flow patent production at t + 5) thus appears warranted. This

timing allows firms in my sample to be exposed to spillovers and to be impacted by them within a

reasonable time frame so that I can observe changes in productivity. My own empirical work, pre-

sented later in the paper (Figure 4b), provides a justification for the lag between R&D investments

by agencies and patent creation. The timeline shown in Figure 3 summarizes the timing used in

the variable creation.

4.2. Endogeneity. If a researcher could run the ideal experiment to estimate (3), she would choose,

at random, how many patents pat and p f t upstream agencies and firms are generating in year t. In

such hypothetical case, the exposures to spillovers ∑a sia pat and ∑ f si f p f t would be orthogonal to

the error ϵit by design. With this ideal experiment, the OLS regression of firm i’s log productivity

change at time t on its exposure to federal and private innovation yields unbiased estimates γ̂ and

ε̂.

Departing from the ideal experiment, firms’ exposures to government-funded innovations may

not be random and the exclusion restriction E[ϵ′ ∑∑∑ sp|e] = 0 may not hold. The most likely threat

22These are all examples of lags between the dissemination of an innovation and its application by a firm,
these are not lags between the production of science and productivity externalities accruing to firms rely-
ing on science. These science-to-firm lags are typically found to be much longer than innovation-to-firm.
Adams (1990) estimate this lag to be of the order of 20 years, and Marx and Fuegi (2020) find that the aver-
age time lag between a patent application year and the publication year of the papers it cites is 17 years.
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to identification comes from correlated shocks to technologies that affect both the propensity of

upstream agencies to innovate and the outcomes of downstream firms. Technological advances

like the creation of the personal computer or the development of mRNA vaccines may present new

R&D opportunities for the Department of Defense and the Department of Health and Human Ser-

vices, respectively, while at the same time offering growth opportunities to IT and pharmaceutical

firms exposed to these agencies. This type of correlated shock would bias OLS estimates upward

and is a standard manifestation of the ‘reflection problem’ (Manski, 1993). Another manifestation

of correlated shock would be government demand shocks that may increase R&D spending of an

agency (like the DoD in period of war) and at the same time increase demand for firms who are

both exposed to spillovers and government contractors (like defense firms).

In addition to correlated shocks, a second threat to identification comes from reverse causality.

The government may be increasing some agencies’ R&D because the productivity of a given sector

has been disappointing. This could be the case of the health sector, which is exposed to research

conducted by the various institutes of the Department of Health and Human Services, and whose

productivity growth, by some accounts, has been lower than in the wider US economy (Spitalnic

et al., 2016).

Several choices are likely to limit the extent of these endogeneity concerns. Firstly, the choices

of time periods used for the variable construction helps in alleviating both correlated shock and

reverse causality issues. Technology spillovers are operating over relatively long time periods (be-

tween five and 10 years according to the literature reviewed in 4.1), while government demand

shocks such as those caused by wars or pandemics are typically short lived and have immediate

impacts on government contractors’ performance. Antolin-Diaz and Surico (2022) find that im-

pulse responses of government spending following military news are indistinguishable from 0 (at

the 68% level) after five years.23 In a careful causal analysis of a government demand shock on

plants’ productivity, Ilzetzki (2022) shows that demand-induced productivity increases in aircraft

manufacturing plants starts decreasing 15 months after the initial shock with output per worker

growth undistinguishable from 0 after 18 months (95% level).24 Government demand shocks and

government-generated spillovers are working on non-overlapping timeline: while the short-run

effects of an increase in government spending are due to demand, they are due to spillovers at

longer horizon. Reverse causality issues are also unlikely to be serious because of the way in

which standard policymaking is conducted: changes in agencies budget are most likely to be in-

formed by past economic outcomes than economic outcomes in the future.

Secondly, to mitigate the impact of government demand shocks, I remove from my sample

firms in sectors most likely to be exposed to these shocks. These sectors are: ‘Guided Missiles &

23Figure 1, first panel.
24Figure 8(b).
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Space Vehicles & Parts’ (SIC4 code: 3760), ‘Aircraft’ (3721), ‘Search, Detection, Navigation, Guid-

ance, Aeronautical Systems’ (3812), ‘Pharmaceutical Preparations’ (2834), ‘Wholesale-Drugs, Pro-

prietaries & Druggists’ Sundries’ (5122), ‘Services-Computer Integrated Systems Design’ (7373),

‘Ship & Boat Building & Repairing’ (3730) and ‘Biological Products’ (2836). Their exclusion re-

moves arms and aircraft manufacturers such as Lockheed Martin or Raytheon and all big phar-

maceutical firms such as GSK and Pfizer.

Thirdly, one way to evaluate the extent of correlated shocks and reverse causality is to exploit

the panel nature of my SSIV setting and conducting falsification tests using lagged outcomes. If the

productivity growth of firms more exposed to spillovers is higher in the pre-period, this would be

indicative of a violation of the exclusion restriction. I test for pre-trends and pre-levels in section 5

and find no evidence that more treated firms are different or on a different growth trajectory than

less treated firms.

Lastly, to deal with unobserved heterogeneity, I assume that the error ϵit is the sum of a 2-digit-

sector-specific fixed effect ηs(i), a 5-year period fixed effect τt, a geography (=state) fixed effect

λg(i), and an idiosyncratic component (vit) that I allow to be correlated across firms exposed to a

similar set of agencies (Adão et al., 2019) and heteroskedastic. In my fullest specifications, I also

control for four lagged firm observables, in the matrix Xi: capital stock, sales, employment and

patent count, all in logs. The full structural equation of my SSIV setting is thus:

∆zit = ϕeit + γ ∑
a

siat pat + ε ∑
f

si f t p f t + ηs(i) + τt + λg(i) + Xitβ + vit (5)

Controlling for sector, time and state fixed effects will remove variation common to firms across

sectors (including sector-specific productivity trajectories shocks), states and period (including

aggregate demand shocks). Nevertheless, correlated shocks may still bias my estimates in spite

of these adjustments. In the next two sub-sections, I introduce two novel instrumental variable

strategies to deal with this concern.

4.3. Historical SSIV instrument. I construct a historical SSIV instrument that allows me to es-

timate the causal impact of spillovers from public R&D on firm productivity from 1950 to 2020.

This instrument has the advantage of covering a long time period. However, it cannot be used

to estimate the causal impact of private R&D spillovers on firm outcomes, a weakness my second

instrument addresses.

The instrument combines agency-specific shocks in federal funding and the shares of exposure

to knowledge spillovers siat. The shocks come from variation in total R&D outlays by 17 gov-

ernment agencies and departments (henceforth, just ‘agencies’) who have funded some patented

innovations, over 13 five-year periods, from 1950 to 2010. Following the notation of equation (3),

agencies are indexed by a and periods by t. The identification thus relies on cross-sectional and
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time-variation in agencies’ budgets. They consist of the following departments and agencies, in

decreasing order of patenting activity in 2010: the Department of Defense (including DARPA),

the Department of Health and Human Services (including the National Institutes of Health), the

Department of Energy (including ARPA-E), the National Science Foundation, NASA, the Depart-

ment of Agriculture, the Department of Commerce, the Small Business Administration (including

its SBIR seed fund for innovative startups), the Department of Veterans Affairs, the Department of

Education, the Environmental Protection Agency, the Department of Transportation, the Depart-

ment of Homeland Security, the Department of Interior, the Atomic Energy Commission and the

Department of State.25

To better understand where the variation used in my identification come from, panels A.7, A.8

and A.9 in the Appendix show time series of the budgets of selected agencies. The figures suggest

that there is a large degree of heterogeneity and stochasticity in budget changes across agencies

and over time. Moreover, a lot of the variation is driven by political decisions or geopolitical events

that are plausibly uncorrelated with firm performance and innovation five to ten years later, unless

perhaps through spillovers. For instance, changes in spending patterns by the Department of

Defense, NASA, the Department of Energy and the Department of Homeland Security are clearly

the result of wars, foreign threats, space races, terrorist attacks, the oil shock and other geopolitical

events. These are some of the most active agencies when it comes to filing patents and firms are

therefore largely exposed to these agencies’ innovations. Even agencies without a clear strategic

or political mission are subject to variations in funding driven by political events. The National

Science Foundation for example, experiences a sluggish budget growth during the Korea war as

resources are directed toward the war effort. Conversely, its large budget increase that started in

the late 1950s is the result of specific laws triggered by the successful launch of Sputnik in 1957.

Similarly, the 1983 increase is due to a sudden decision by the Reagan administration to increase

funding for science and engineering.26 To summarize, changes in federal agencies’ budget offer

pausibly random variation that is uncorrelated with firm outcomes. In robustness checks, I also

use only a subset of funding shocks that are most evidently random based on my read of the

agencies histories and the classification of narrative shocks by Fieldhouse and Mertens (2023).

This approach can be seen as a ‘narrative-SSIV’ (more details are provided in 5.1).

25Some agencies do not exist over the whole 1950-2010 period (e.g. NASA, NSF). In periods when an agency
does not exist, the shares sat are equal to 0 and the sum of shares for other agencies are equal to 1.
26For a detailed history of the NSF, see ‘The National Science Foundation: A Brief History’ (1994), by George
T. Mazuzan https://www.nsf.gov/about/history/nsf50/nsf8816.jsp. Retrieved January 2023.
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The funding shocks are calculated as the log yearly R&D budgets of agencies, deflated using

the Bureau of Labor Statistics CPI,27 and measured at t − 5, five years before the agencies’ patents.

The funding shocks are denoted by gat.

gat := ln(R&D budgetat−5) (6)

These shocks are used to construct the firm-specific instrument, ∑
a

siatgat, for the endogenous

exposure to public R&D spillovers, ∑
a

siat pat. Equation (5) is then estimated by Two-Stage Least

Squares (2SLS). The endogenous exposure to private R&D spillovers is not instrumented in the

SSIV setting.

Out of a theoretical maximum of 221 shocks (|A| × |T| = 13 × 17 = 221), 172 are used in my

empirical exercise because some agencies did not exist for the full period over which I observe firm

outcomes and, in some rare occasions, there is no technological overlap between firms and some

agencies in some periods. The quasi-experimental SSIV design relies on numerous, uncorrelated

and as-good-as-random shocks. To check if shocks are numerous enough and not dominated by

one agency×period cell, I compute the inverse of the Herfindahl index of average exposure shares

at the level of the identifying variation. A high value of the HHI indicates a dispersed source of

variation across agencies and periods and is a necessary condition for the consistency of the SSIV

estimator and the asymptotic validity of the exposure-robust confidence intervals (Borusyak et al.,

2022). Formally, I calculate:

inverse HHI :=
1

∑A,T
a,t s2

at

where sat :=
1

Nat
∑

i
sait (7)

that is, I compute the inverse HHI of average shares of exposures of firms, indexed by i, exposed

to a in t.28 Average shares of exposure sat are calculated over all Nat firms exposed to agency a at

t. The inverse HHI in my sample is 138, suggesting a reasonably dispersed set of shocks.29 For

inference, this value is well above threshold of 20 at which exposure-robust standard errors are

close to their asymptotic counterparts (Borusyak et al. 2022, p. 199).

The highest shares of exposure in my sample are informative about the variation I am using;

they show to which agencies, in which periods, firms in my sample are most exposed. The highest

6 shares are all associated with NASA or the Department of Defense in the late 1950s to early 1970s,

consistent with the importance of these two agencies in federal R&D funding during this period.

27Amounts are expressed in 2020 dollars, using the BLS CPI series CUUR0000SA0:
data.bls.gov/timeseries/CUUR0000SA0.
28I use Borusyak et al. (2022)’s command to transform my dataset at the firm × period level into a dataset
at the level of the identifying variation (agency × period), with corresponding exposure weights.
29If one were to run the SSIV specification at the level of agencies × period, like in the Borusyak et al. (2022)
setting, this would means that the effective sample size used is 138.
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The department of Health and Human Services, the department of Energy and the department of

Agriculture in the 1960s and 1970s are completing the top 10.30 Along with a strong, exposure-

robust, first stage F-stat and an absence of pre-trends (both discussed in section 5), the high inverse

HHI is indicative of the appropriateness of the SSIV design.

4.4. Patent examiner leniency instrument. While the historical SSIV setting enables me to es-

timate γ–the impact of public R&D spillovers on firm productivity growth–exogenous shocks in

agencies’ budgets cannot be used to estimate ε, the impact of private R&D. In this section, I present

another quasi-experimental identification strategy that addresses this limitation. It relies on patent

examiners’ leniency, defined as their rate of conversion of patent applications into patent grants,

and it enables me to compare the magnitude of spillovers from public agencies to that of spillovers

from private firms. The drawback of this approach is to not be applicable to the whole period over

which I observe firm outcomes. The patent application data which is used to calculate examiners’

leniency is indeed only available from 2001 onward. The results of this approach are therefore

complements and not substitutes to the historical SSIV results. I describe this identification strat-

egy in more details in this sub-section.

Examiners all have the same mandate: grant patents to inventions that are non-obvious, novel

and useful. In practice however, they have some discretion when deciding to grant a patent. Ex-

aminers vary greatly in their average grant rate, even within years and within the narrow techno-

logical categories within which they officiate (‘art units’, which are different from patent classes).

The leniency of an examiner, in turn, has a strong positive association with the probability a patent

application is converted to a patent grant.

Previous work has showed that assignment of applications to examiners can be treated as ran-

dom, conditional on years × art unit fixed effects (Sampat and Williams, 2019; Farre-Mensa et al.,

2020). The random allocation of applications to examiners of varying leniency therefore provides

interesting quasi-experimental variation in patent grants, which can be used to study the impact

of being awarded a patent on firm outcomes. The innovation literature has made extensive use

of this ‘patent lottery’ (Farre-Mensa et al., 2020) to study, among other, patent litigation (Feng and

Jaravel, 2020), startup growth (Farre-Mensa et al., 2020) and, like in the present context, spillovers

(Sampat and Williams, 2019). In my setting, I am using examiners’ leniency in a novel way: not

at the level of the focal firm whose outcomes I am interested in, but at the level of the agencies a

focal firm is drawing inspiration from.

The patent lottery is used here to affect spillovers. Some firms happen to be exposed to spillovers

by entities who were fortunate to face more lenient examiners. Other firms are receiving fewer

30The order is as follows: NASA-1970 (2.8%), Defense-1970 (2.6%), Defense-1965 (2.3%), NASA-1965 (2.0%),
Defense-1960 (1.9%), Defense-1955 (1.6%), HHS-1970 (1.6%), Energy-1970 (1.5%), HHS-1965 (1.4%) and
Agriculture-1965 (1.3%).
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spillovers because upstream patent examiners were more conservative. The patent examiner in-

strument acts as a randomizing device for upstream patent generation, conditional on a suitable

set of covariates. It therefore approximates the ideal experiment of randomizing knowledge pro-

duction by agencies and firms.

The identification relies on the creation of an instrument for ∑
a

siat pat and ∑
f

si f t p f t, the expo-

sures to patent production by agencies and firms. The instruments are weighted average lenien-

cies faced by upstream agencies ∑
a

siala, and by upstream firms ∑
f

si f l f . In both instruments, the

shares are calculated like in the historical shift-share instruments using (4). Average leniencies

are calculated as la,t = ∑
j∈Jat

le(j),t

|Jat|
: the average of examiners’ leniencies le(j)t across the set of all

the applications that agency a submits in year t. This set is denoted Jat. Applications are indexed

by j and examiners by e. Examiner leniencies for an agency are calculated using all applications

submitted to an examiner, excluding those submitted by the agency in question. This creates

leave-one-out leniency indices that are agency-specific. They are further residualized on art units

and years. The exposure to average leniency of upstream agencies ∑
a

siala can then be used as an

instrument for the change in exposure to spillovers by these same upstream agencies ∑
a

sia pa. The

next section shows that this instrument is strong for both private and public R&D. As for the ex-

clusion restriction , it is likely to be satisfied due to the quasi-experimental nature of the allocation

of applications to examiners.

Discussion. What are the mechanisms through which the examiner instrument work? There are

two potential mechanisms. The first is the validation of the quality of an innovation. An inno-

vation protected by a granted patent is more likely to be of higher quality than a non-granted

innovation because it satisfies the criteria of usefulness, non-obviousness and novelty used by

patent examiners to grant patents. This makes the granted patent a more powerful vehicle for

spillover because of this ‘seal of approval’ from the USPTO. The second mechanism is the reve-

lation of the innovation to the wider world. Patent applications are confidential for 18 months

from the date of filing. This so-called ‘pendency’ lag covers almost entirely the average lag be-

tween patent applications and grant that USPTO patent applicants have historically experienced

(around 20 months). Patents that are granted before the 18 months of secrecy therefore provide a

visibility boost to their innovation, in addition to the signal of quality. Moreover, patent applicants

can decide to opt out of the automatic disclosure of application. Over the period covered by my

instrument (2000-2010), around 10% of applicants opt out when applying.

One concern about the validity of this IV approach is that aggregating leniency scores of exam-

iners across all the applications of an agency will lead to a lack of usable variation in the instru-

ment. Agencies indeed draw successive, plausibly independent and random examiner leniencies
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when they submit several patent applications. The average examiner leniency they are exposed to

will therefore converge in probability to 0–the population mean of leniency scores residualized on

art units × year–as their number of applications grow, by the Law of Large Number. The larger the

volume of application an agency files, the smaller the variation in average leniency scores. This

may then lead to a weak first stage and and invalidate this IV design. The problem may be more

severe for the public R&D instrument because public agencies have typically higher volumes of

applications than firms.

To mitigate this concern, I define public agencies as the actual assignees and/or funding agen-

cies of patents as reported in the USPTO data, rather than aggregating public agencies at the

coarse level for which I have data on R&D budgets like in the SSIV design. Patent applications

are therefore linked to entities such as the Lawrence Livermore National Laboratory or the Ad-

vanced Research Projects Agency–Energy (ARPA-E) rather than the wider Department of Energy

to which they belong. There are 200 such fine agencies compared to the 17 used in the historical

SSIV. This step reduces the average volume of agencies’ applications and thus mitigates the risk

of the variation in average leniencies to collapse to 0. Figure 18 in the Appendix shows that this

step leaves a lot of useful variation in the average leniencies faced by agencies and firms, if they

file fewer than 20 patent applications. In my data, 90% of firms and 60% of fine agencies file fewer

than 20 patents a year. Shares of exposure to spillovers are appropriately calculated over these 200

fine agencies and thousands of private patent assignees.

5. RESULTS

I now turn to the regression results from the two instrumental variable strategies, starting with

the historical SSIV.

5.1. Historical SSIV. My main sample consists of 6,499 firm-by-period observations for which

outcome variables, pre-trend outcomes and controls are not missing. Firms in ‘Finance, Insurance

and Real Estate’ are excluded. Observations are further selected on non-missing exposures to

public or private spillovers. Table E.16 in the Appendix provides summary statistics about the

sample. Firms are rather large, with a median employment count of 5,000 workers, median yearly

sales of 1.2 billion 2020 USD and 4 million in yearly median R&D expenses. Filing patents in

any given year is relatively rare; the median firm files three. The most represented sectors are in

electronic components, lab apparatus & instruments, and surgical, medical, & dental instruments

and supplies.

For all SSIV results, standard errors are robust to arbitrary correlation across firms that are ex-

posed to a similar distribution of agencies, using the method developed by Adão et al. (2019).
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Adão et al. (2019) show that clustered or heteroskedasticity-robust standard errors may substan-

tially underestimate the variability of IV estimators when the instrument takes a shift-share form.

The reason is that the regression residual vit in (5) will include shift-share-like terms with shares

correlated with the shift-share instrument. This leads firms with similar exposure shares to have

similar exposures to the shocks and then similar residuals. This correlation structure is likely to

exist in my setting: firms more exposed to innovation by NASA, for instance, may have correlated

productivity growths that standard errors clustered at the sector or state level may fail to account

for.

First stage. The validity of the SSIV identification relies on a strong first stage i.e. a strong relation-

ship between funding shocks at t− 5 and patent production funded by these agencies at t. Figures

4a and 4b provide evidence that such a relationship exists. Figure 4a shows a scatterplot of the

public R&D spillovers variable, ∑
a

siat pat, residualized on sector, period and state fixed effects as

well as lagged firm controls (R&D, employment, capital and patent count) on the average of R&D

funding shocks, ∑
a

siatgat, also residualized. The relationship is positive and significant, with an

exposure-robust F-stat of 98, suggesting that the instrument is strong.31

To gauge the appropriateness of the timing, and in particular the five-year lag separating fund-

ing shocks to patent production by agencies, Figure 4b provides a visual assessment of the dy-

namic relationship between the two by reporting the impulse response of patents to R&D funding

at various time horizons. It reports point estimates and confidence intervals of local projections

of yearly patent production by federal agency (in log patents) on R&D funding levels (in log 2020

dollars), where patent production is observed at different years relative to the funding. The spec-

ification controls for year and agency fixed effects, and for five lags of funding.32 The regressions

are weighted by patent counts at time t = 0 to account for the greater importance of large agencies

in the composition of federal R&D, and thus in the shares of exposures of firms to federal inno-

vation. Newey-West standard errors (Heteroskedasticity and Autocorrelation Consistent) with

one lag are reported (95% and 90% levels). The figure shows that an agency’s patents produc-

tion after a funding shock is positively associated with the (log) amount of funding at t. The

elasticity progressively increases after the funding shock, until it reaches a maximum of 0.45 at

31The corresponding sector-clustered Cragg-Donald F-stat is 89.4. The lower value of the exposure-robust
F-stat highlights the relevance of exposure robust inference in my setting.
32For a given lag τ, the estimating equation is:

pa,t+τ = βxat + γ′Xat + δi + τt + ϵit

pa,t+τ is the log count of patents by agency a in year t + τ, xat is the log R&D budget of agency a in focal
year t and the vector Xat contains lags of R&D budgets. The coefficient of interest is β. τ varies from -10 to
+15.
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t + 9 before slowly coming back down to its baseline level. While the impulse response is impre-

cisely estimated, patent production clearly shows an upward trend after the shock. Interestingly,

patent production before the funding shock does not appear to be correlated with the shock. This

provides some evidence that the R&D funding variation that I exploit is not a consequence of

underlying productivity or innovation trends (captured by agencies’ patent productions).

β = .551***  (0.056)
F = 98.14
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FIGURE 4. SSIV first stage

Notes: The left-hand side scatterplot shows the correlation between public R&D spillovers and exposure
to funding shocks for all 6,499 firms × period in my historical SSIV sample. Standard errors and first-stage
F-stats are exposure-robust (Adão et al., 2019). Spillovers and exposure to funding are partialled out on the
full set of controls used in (5).
The right-hand side graph is a local projection of (log) patents by federal agencies on their (log) R&D
funding, at different time horizons. The unit of analysis is a federal agency (N = 17). Standard errors are
Heteroskedasticity and Autocorrelation Consistent (Newey-West with one lag).

The delay between public funding of R&D and patent production is in line with the evidence

reported in previous research. De Rassenfosse et al. (2019) find that the average gestation lag be-

tween a US government procurement contract being awarded to a firm and the filing of a patent

by this firm is 33 months (2.75 years), with 90% of all patents linked to contracts being filed be-

tween 1 and 7.5 years.33 Azoulay et al. (2019) study grants from the NIH to pharmaceutical firms

and find longer delays: two thirds of grantees who eventually file a patent, file it within 10 years

of the award data and nearly all firms who do file a patent do it within 15 years.34 Overall, the em-

pirical exercise of Figure 4b and previous research provide supporting evidence for the timeline

described in Figure 3.

33Own calculations based on figure 2A of De Rassenfosse et al. (2019).
34Figure 5, p. 135.
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Main impacts. I report here on three sets of 2SLS regression results, all using a stacked differ-

ence specification that divides the 1950-2020 panel into equally sized 5-year intervals to estimate

equation (5). The first set of results, shown in Table 1, reports changes in productivity, sales and

employment from t to t + 5, and flow variables such as patent production and R&D investments

at t + 5. I further report the probability of filing a patent at t + 5 to evaluate the extensive margin

impact of public R&D spillovers on innovation. In all specifications, standard errors are exposure-

robust (Adão et al., 2019). To investigate the sensitivity of my 2SLS estimates, I report coefficients

γ̂ across specifications with increasingly comprehensive controls. All specifications include sector,

period and state fixed effects. To investigate the importance of the coarseness of sector fixed effects

specifically, I present in the last columns coefficients obtained when controlling for 238 fine 3-digit

sectors (like ‘382 – Measuring and Controlling Devices’) instead of the 65 coarser 2-digit sector

fixed effects (like ‘38 – Instruments and related products’). Starting from the simplest specifica-

tion, including only own R&D effort, patents, and period, state and sector fixed effects, in column

(1), I progressively add the endogenous private R&D spillovers in (2) and lagged firms’ capital,

employment and sales in (3). Importantly, all first stage F-stats are high; they hover at around 100.

Overall, the results shown in Table 1 suggest that an increase in exposure to public R&D spillovers

has a positive impact on a broad range of firm-level productivity indicators and own R&D expen-

ditures. It is however notable that firms do not appear to grow more in terms of sales or employ-

ment. Coefficients are stable across specifications, even when switching from coarse to fine sector

fixed effects.

Productivity at the firm level is estimated using the Olley and Pakes (1996) method with the

correction suggested by Ackerberg et al. (2015).35 Using this measure of productivity as my main

outcome of interest, I find that a 1% increase in public spillovers causes a .023% to 0.025% increase

in productivity across specifications (first rowm of Table 1). Estimated measures of productivity

are also positively impacted: Cobb-Douglas and translog productivities are all positively impacted

with elasticities between .03 and .04 (significant at the 1% level, not reported).

Turning to innovation outcomes, I find that public R&D spillovers positively impact a firm’s

investment in R&D. Each 1% increase in spillovers cause a .023 to .026% increase in own R&D

spending, five years after the shock (penultimate row of Table 1). This result echoes the finding

of Moretti et al. (2019) who show that public and private R&D are complements: an increase in

public R&D tends to crowd in private investment in R&D. It also complements the findings of

Fieldhouse and Mertens (2023) that R&D appropriation for both defense and non-defense shocks

cause private R&D investments to increase.

35COGS are used as variable inputs, the state variable is the capital stock (PPEGT) and the instrument is
investment (CAPX). Estimation is performed with Stata’s prodest package.
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The impact of public R&D spillovers on innovation by the focal firm is also notable. To deal with

the large number of zeroes in the patent count field, I use the Inverse Hyperbolic Sine of patent

counts at time t+ 5 rather than the log of patents.36. It appears that firms increase their own patent

production following a positive spillover shock: each 1% increase in spillovers generates a more

than 0.02% increase in own patent production. Finally, the last column of Table ?? shows that

public R&D spillovers also impact a firm’s propensity to file patents five years down the road.

Pre-trends and falsifications. To evaluate the validity of the historical SSIV setting, I conduct falsifi-

cation tests where I investigate if firms who are more intensively treated were on different growth

trajectories before time t. To do so, I regress lagged outcomes (measured from t − 5 to t, or at t

for flow variables) on the instrumented exposure to spillovers and the suite of controls of speci-

fication (5). Results are reported in Table 2. I find that firms more exposed to spillovers do not

appear to be on a significantly different trajectory than firms less intensively treated. In the fullest

specification (column 3), the coefficient on public R&D spillovers is never significantly different

from 0. Most importantly, firm TFP does not exhibit any pre-trend. Some pre-trends appear when

I control for fine sectors (column 4); firms experiencing larger increases in public R&D spillovers

tend to invest more in R&D already at time t, but they file fewer patents. One explanation for the

positive response of time-t R&D can be that private R&D responds more to public R&D funding

(gat shocks measured at time t − 5) than to public R&D patent production (pat, measured at time

t).

Overall, the absence of pre-trends in my main specification (column 3) provides some credibility

to the SSIV setting by ensuring that the positive productivity impacts documented in Table 1 are

not a reflection of an already existing positive increase in productivity and innovativeness that

would have happened irrespective of the treatment.

10-year outcomes. In Appendix E.2, I use the same sample of firms to test if the productivity in-

crease that happens after 5 years persists over longer horizons. The increase in firm TFP is indeed

persistent after 10 years (+.027%, significant at the 5% level), suggesting that firms experience a

durable rise in productivity following a one-time spillover shock. Interestingly, a greater expo-

sure to public R&D spillovers cause a slight but detectable reduction in employment after 10 years.

In other words, firms benefit from technology spillovers by becoming more productive and by

economizing on labour, over long-enough durations.

Narrative approach. If R&D expenditures by federal agencies are reacting to factors affecting pro-

ductivity trends, the quasi-experimental SSIV approach I am using may not be appropriate. My

36IHS(x) = ln
(

x
2
+

1
2

√
x2 + 1

)
. The Inverse Hyperbolic Sine behaves like the natural logarithm for large

values of x, but it is defined at x = 0.
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(1) (2) (3) (4)

Productivity
∆5 ln(TFP)t .024** .025*** .025*** .023**

(.009) (.009) (.009) (.011)

Firm sales and employment
∆5 ln(Sales)t .009 .009 .008 .010

(.008) (.008) (.008) (.007)
∆5 ln(Employment)t .007 .008 .008 .009

(.009) (.009) (.009) (.008)

Innovation
IHS Patent countt+5 .021*** .023*** .024*** .026***

(.007) (.008) (.007) (.009)
ln(R&D)t+5 .040*** .029** .031** .035***

(.015) (.013) (.013) (.009)
Pr(Files patents)t+5 .016* .018* .019** .017**

(.009) (.009) (.009) (.008)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

TABLE 1. Historical SSIV regression results – 5 years

Notes: The unit of observation is a firm × period. This table shows the estimates for ϵ, the impact of a 1%
increase in spillovers from public R&D on various firm outcomes (listed in the leftmost column). Standard errors
and F-stats are exposure-robust (Adão et al., 2019): they are computed using the authors’ reg ss and ivreg ss
commands. Lagged firm controls include capital, employment, sales and patent counts (all in logs).
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

estimates would then capture a (plausibly positive) correlation between investments by federal

agencies in certain technologies and the upward productivity growth of firms who are active in

the use or development of these technologies. The absence of pre-trends documented in Table 2
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(1) (2) (3) (4)

Productivity
∆5 ln(TFP)t−5 .014 .011 .011 .014

(.009) (.009) (.009) (.011)

Firm sales and employment
∆5 ln(Sales)t−5 .003 .003 .002 .004

(.008) (.008) (.007) (.007)
∆5 ln(Employment)t−5 .009 .01 .009 .011*

(.006) (.006) (.006) (.006)

Innovation
IHS Patent countt -.005* -.004 -.004 -.005**

(.003) (.003) (.003) (.003)
ln(R&D)t .026* .018 .019 .021**

(.014) (.013) (.013) (.009)
Pr(Files patents)t -.003 .000 .000 -.003

(.009) (.010) (.010) (.009)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

TABLE 2. Historical SSIV regression results – Pre-trend tests

Notes: The unit of observation is a firm × period. Standard errors and F-stats are exposure-robust (Adão et al.,
2019): they are computed using the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

provides some evidence that this issue is unlikely to be present in my setting. Nevertheless, I pro-

vide further validation for my quasi-experimental approach by selecting agency funding shocks

that are likely to be uncorrelated with other factors affecting productivity trends. This narrative

approach is similar to that of Fieldhouse and Mertens (2023) and I partly rely on their selection
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of historical funding shocks to select mine. I further add shocks experienced by the National Sci-

ence Foundation and the department of Homeland Security to my list of narrative shocks. The

shocks I keep in my narrative-SSIV are listed in Tables E.18 and E.19 in Appendix E.3, along with

a justification for their inclusion. This procedure gives me a list of 47 shocks. The Department

of Defense is the most represented agency among these shocks (15 shocks in total). It is followed

by the National Science Foundation (9) whose funding is eminently political. For instance, its

research priorities in the 1950s were set by the urge to keep a technological lead over the USSR,

and the NSF is usually one of the first agencies to get its funding reduced in times of tight budget

controls, like after the Budget Control Act of 2011.

Figures 5a and 5b show how the estimates from the narrative-SSIV approach compare to those

of the standard SSIV for the main productivity outcomes I am interested in. First, it is notable that

the exposure-robust F-stat is slightly lower when using the narrative-SSIV; its value is 48.25 com-

pared to 98.14 (column 3 of Table 1): the narrative-SSIV instrument uses less variation than what is

available across the intersection of agencies and time periods and this results in a slightly weaker

first stage. The second stage results are however broadly similar across the two specifications. The

narrative-SSIV coefficients indicate no pre-trend across most outcomes. However, patent produc-

tion is significantly negative the pre-period when using the narrative SSIV. Turning to 5-year firm

outcomes, nearly all narrative-SSIV coefficient are very close to the SSIV ones with the exception

of the coefficient on spillovers when patent production is the dependent variable; the coefficient is

indistinguishable from 0 in this specification. Overall, the narrative-SSIV approach provides some

support for the quasi-experimental SSIV approach. With the exception of the specification when

patents are on the right-hand side, restricting shocks to those that are evidently exogenous does

not affect the results much.

It is also notable that the elasticity of productivity to public R&D spillovers is higher (+.071%)

when using the exogenous shocks than when using all shocks (+.025%). This result is a likely

manifestation of heterogeneous impacts across federal agencies.

Treatment heterogeneity. The discussion so far has postulated a constant causal effect of spillovers

on firm growth, across all firms. I present here estimates of treatment effect heterogeneity by firm

size. These results suggest that the impact of public R&D spillovers manifest itself in the aggre-

gate economy through changes in productivity experienced by smaller firms. This mechanism is

modeled formally in section 6.

Several reasons motivate the focus on treatment heterogeneity. Firstly, there has been a secular

trend toward more concentration among American businesses, in particular since the 1960s, as

documented by Kwon et al. (2022). Research into the causes of the rise in concentration is still

very active and of prime policy interest. Previous work has emphasized the role of technology
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FIGURE 5. Comparison of the SSIV (blue) and narrative-SSIV (orange)

Notes: The figures show point estimates and 95% confidence intervals of the coefficients of exposure to spillovers,
instrumented by the SSIV (in blue) and narrative-SSIV instruments (in orange). Estimates come from my pre-
ferred specification of column (4) in the regression tables. The unit of observation is a firm × period. Standard
errors and F-stats are exposure-robust (Adão et al., 2019): they are computed using the authors’ reg ss and
ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

(Autor et al., 2020; Hsieh and Rossi-Hansberg, 2023), a lack of competition, perhaps caused by a

lack of appropriate regulation (Gutiérrez and Philippon, 2017), increased barriers to entry (Fur-

man, 2015), decreasing spillovers between market leaders and followers (Akcigit and Ates, 2022;

Olmstead-Rumsey, 2022) or globalization (Feenstra and Weinstein, 2017). My empirical exercise

suggests another, complementary explanations: smaller firms rely more on spillovers from pub-

lic R&D than larger firms and the decline in public R&D might therefore put smaller firms at a

disadvantage.

Secondly, as fact 3 in section 3 has shown, smaller firms are more likely to cite public R&D

patents which points to he importance of spillovers for them. Prior work has shown that firms of

different sizes use spillovers differently. Acs et al. (1994) for instance, were the first to document

that smaller US firms make a more extensive use of spillovers than large ones. By contrast, large

corporations rely more on their own R&D investments. The theoretical argument is that, with a

lesser capacity to mobilise own R&D funds, small firms tend to rely on another complementary

input in their knowledge production function: ideas from other sources. Audretsch and Vivarelli

(1996) finds similar results among Italian firms.

To test if smaller firms in my data benefit more from public R&D spillovers than larger ones, I

modify my estimating equation (5) by adding the interaction of the public spillover variable with

the natural log of firm employment in t − 5, taken here to represent firm size. I demean firm size
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by average log employment. The coefficient on the interaction term can thus be interpreted as the

marginal impact of a 1% increase in spillovers on the productivity of a firm that is one log-point

larger than average. At the average firm size of 23,000 employees, this one log-point difference

corresponds to a jump to 62,500 employees (an e1-fold increase). Equivalently, this is comparable

to the difference between the median firm (5,000 employees) and a firm at the 70th percentile

(13,500). The estimating equation for the interaction effect is:

∆zit =ϕeit + γ1 ∑
a

siat pat + γ2 ∑
a

siat pat × ln ( ˜empit−5)

+ ε ∑
f

si f t p f t + ηs(i) + τt + λg(i) + Xitβ + vit

(8)

where γ1 is the baseline impact and γ2 is the interaction effect. ln ( ˜empit−5) stands for de-

meaned employment at t − 5. Public R&D spillovers and their interaction with size are instru-

mented by funding shocks and funding shocks interacted with size, respectively. Standard errors

are exposure-robust. As shown in Table 3, heterogeneity of the impact of spillover matters, and

the coefficients on the treatment interacted by firm size have a negative sign for productivity, sales

and employment: larger firms are less likely to benefit from spillovers from public R&D along

these dimensions. The baseline impact on TFP is positive, suggesting that all firms benefit from

spillovers. Baseline elasticities of .018% to .023% are in line with the main impacts found in Table

1. This positive effect on productivity is quickly decreasing with firm size though; a firm one log

point larger than its peers experiences a .006% lower increase in value added per worker due to

public R&D spillovers, as can be seen from the point estimate of γ2 in column 3 of Table 3. Taken

at face value, and assuming that the log-linear relationship between spillovers and firm size holds

further away from the average firm size, this means that a firm 3.6 log-point bigger than the av-

erage firm experiences no productivity growth from public R&D spillovers. While firm sales and

employment did not appear to be affected by public R&D spillovers in the baseline specification,

small firms experience large gains in size according to the coefficients on the interaction term re-

ported in table 3. A firm 1-log point smaller than the average firm grows by .016% (.0035+.0071,

column 3) in terms of sales and by .013% (-.0021+.0146, column 3) in terms of employment count.

Interestingly, larger firms are more likely to file patents following an increase in public R&D

spillovers. This finding points to the greater reliance of large firms on the patent system to protect

their IP (Mezzanotti and Simcoe, 2023). They are also investing in R&D at a higher rate than

smaller firms.

Summary and discussion. This section has reported on several empirical exercises using a historical

SSIV identification to identify the causal impact of public R&D spillovers on firm productivity. I
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(1) (2) (3) (4)

∆5 ln(TFP) Baseline .0205** .0225** .0214** .0183*
(.0092) (.0093) (.0092) (.0107)

Interaction -.0037*** -.0039*** -.0059*** -.007***
(.0001) (.0001) (.0004) (.0003)

∆5 ln(Sales) Baseline -.0009 .001 .0035 .0058
(.0071) (.0073) (.008) (.0072)

Interaction -.0114*** -.0117*** -.0071*** -.0059***
(.0002) (.0002) (.0004) (.0003)

∆5 ln(Emp.) Baseline -.0052 -.0023 -.0021 -.002
(.0079) (.008) (.0082) (.0074)

Interaction -.0148*** -.0152*** -.0146*** -.016***
(.0002) (.0002) (.0004) (.0004)

IHS Patent countt+5 Baseline .0368*** .0359*** .0344*** .0354***
(.0081) (.0082) (.0078) (.0093)

Interaction .0188*** .0189*** .016*** .0146***
(.0003) (.0002) (.0005) (.0005)

ln(R&D)t+5 Baseline .0613*** .0481*** .0445*** .0524***
(.0155) (.0127) (.0131) (.0085)

Interaction .0252*** .0268*** .02*** .0262***
(.0006) (.0003) (.0007) (.0005)

Pr(Patents)t+5 Baseline .0176** .0199** .0202** .0189**
(.0088) (.0095) (.0095) (.0084)

Interaction .0022*** .002*** .0027*** .0032***
(.0002) (.0002) (.0004) (.0004)

First-stage F-stats Baseline 97 98 98 108
(exposure robust) Interaction >1,000 >1,000 >1,000 >1,000

Joint37 863 905 902 898
Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

TABLE 3. Historical SSIV regression results – Heterogeneity of impact by
firm size

Notes: Standard errors and individual F-stats are exposure-robust (Adão et al., 2019): they are computed using
the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.
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have documented that a 1% larger public R&D spillover shocks translate into .025% higher pro-

ductivity (TFP estimated via the Olley and Pakes (1996) methodology) at the firm level. I have

also shown that small firms are benefiting much more from these spillovers when it comes to

productivity, sales and employment growth. One drawback of the SSIV approach is that I can-

not compare the magnitude of impact of public spillovers to that of private spillovers. The next

sub-section turns to my second instrument to make progress on this front.

5.2. Patent examiners regressions. Patent examiner regressions provide interesting evidence that

spillovers from public agencies are between two and three time as impactful as spillovers from the

private sector when it comes to increasing private firms’ productivities.

Examiner leniency instrument first stage. For both the public and private R&D instrument, the first

stage is rather strong, with F-statistics around 18 and 6.4, respectively, as can be seen in figure 6

which plots the endogenous exposure to spillovers as function of the exogenous instrument using

examiners’ leniency, for the private and public exposures to spillovers. Both quantities are par-

tialled out on the set of controls used in the regression results. The joint F-stat (Cragg-Donald) is

56.3 for my main specification. Because the identifying variation in my patent examiner regres-

sions come from the examiners and not the upstream firms or agencies filing patents, exposure-

robust F-stats and standard errors are not indicated. I therefore use clustered standard errors at

the period × sector level.

Patent examiner IV results. In Table 4, I report the results of estimating equation (5) by 2SLS when

exposure to public and private spillovers are instrumented by ∑
a

siatlat and ∑
f

si f tl f t, respectively,

the average leniencies to which upstream patent assignees are exposed to. The sample consists

of 5,846 firm×period observations. In line with equation (5), I control for the lagged R&D ex-

penditure of firms to capture increases in own productivity not directly attributable to spillovers,

as well as the progressively more exhaustive suite of controls used in the historical SSIV regres-

sions. I present results for my main measure of productivity, as well as a test for pre-trends for

this outcome.

The results in Table 4 suggest that firm level productivity increases by more following a shock

to public spillovers than after a shock to private spillovers. In my preferred specification with

all controls and SIC2 industry fixed effects (column 4), a 1% increase in public spillovers causes

a 0.08% increase in productivity (significant at the 1% level). This estimate is not too far from

the .07 elasticity that I obtained with the narrative-SSIV specification, but it is higher than the

.025 elasticity from the baseline estimate. One tentative explanation for the discrepancy is that

the period over which the patent examiner instrument is used (2000-2010) is one of sustained
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FIGURE 6. First stages

Notes: The graphs show the correlations between the endogenous treatment, ∑a ln(patentsa) (the average expo-
sure to spillovers from agencies or firms indexed by a), and the instrument, ∑a leniencya (the average leniency
faced by agencies or firms indexed by a). Both the endogenous treatment and the instruments are residualized
on periods, states and 3-digit sectors fixed effects, as well as lagged R&D capital, employment and patent count.
This corresponds to specification (3) in Table 4.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively. Standard errors are clustered
at the period and 2-digit sector level.

productivity increase in the American economy. The higher impact of public R&D spillovers here

might capture some of this effect.

In contrast, a 1% increase in private spillovers causes an increase in productivity of only a third

to a half of that amount. But the estimate of the private spillovers coefficient is not statistically

different from zero and it is imprecisely estimated. The evidence about the different impacts of

public and private R&D spillovers is mixed.

Table 4 also reports pre-trend tests on firm productivity, in the spirit of those reported for the

historical SSIV instrument. Across specifications, there is no pre-trend in productivity.

To evaluate if the micro empirical estimates from the historical SSIV and the patent examiner

instrument matter for aggregate growth and inequality, I now turn to a general equilibrium model

of growth that uses these micro estimates as calibrated parameters.

6. MODEL AND CALIBRATION

Overview of the model. To evaluate the aggregate consequences of the fall in public R&D, I

present here a tractable general equilibrium model of growth with heterogeneous firms and spillovers,

where public and private R&D are distinct. The theory is inspired by heterogeneous agent models

of long-term growth (Luttmer, 2007; Jones and Kim, 2018) and the main theoretical contributions
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(1) (2) (3) (4) (5)

Main outcomes – Dependent variable: ∆5 ln(TFP)t

Public spillovers .085** .082*** .084*** .086***
(.037) (.024) (.023) (.022)

Private spillovers -.361 .0303 .0423 .0134
(.576) (.226) (.230) (.447)

Pre-trends – Dependent variable: ∆5 ln(TFP)t−5

Public spillovers -.0197 -.0101 -.0101 -.0142
(.0401) (.0343) (.0376) (.0452)

Private spillovers .185 .204 .187 .122
(.653) (.514) (.555) (.727)

First-stage F-stats
Public spillovers 408 19.1 18.4 16.2
Private spillovers 246 6.4 6.4 6.3
Joint 57.7 56.3 45.9

Period FE ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓ ✓
Sectors FE (3-digit) ✓
Own R&D and patents ✓ ✓ ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 5,846 5,846 5,846 5,846 5,846

TABLE 4. Patent examiner regression results
Notes: The unit of analysis is a firm × period. Coefficients and 95% intervals show the results of a 2SLS estimation
of (3), where private and public R&D spillovers are instrumented by exposures to changes in average leniencies
faced by upstream firms. Lagged firm controls include sales, employment, capital and patent count. ***, **, and *
indicate two-sided significance at the 1, 5 and 10% levels, respectively. Standard errors are clustered at the period
and 2-digit sector level.

of this paper is to formalize the difference between private and public R&D. This allows me to

show how the balance between public and private R&D determines growth and inequality. My

model delivers simple, closed-form relationships between the share of researchers funded by the

government, aggregate productivity growth and firm inequality.

Unlike in standard endogenous growth models, the central allocative decision does not op-

pose production to research. Instead, the allocation of funds to basic or applied R&D determines

long-term growth. The strong complementarity between basic (funded by the government) and
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applied R&D (funded by the private sector) in the generation of spillovers generates a spillover-

maximizing split that is interior. Higher spillovers then lead to (i) higher growth through an

aggregate boost to all firms and (ii) to lower inequality through easier replacement of incumbents.

The main result of the theory (proposition 2) shows that the growth rate follows an inverted-U

relationship in the share of basic researchers and so does equality between firms. Consequently,

there exists a unique intermediate share of basic researchers that both maximizes BGP growth and

minimizes BGP inequality. Current low levels of productivity growth may be due to a share of

public R&D that is too low (to the left of the peak of the inverted U).

I calibrate the model from the 1950s onward using the values of elasticities of productivity

with respect to public and private R&D estimated in the previous empirical part. The tight link

between the model and the estimating equation of section 4 offers a direct mapping from the γ

and ε parameters to their quasi-experimentally-estimated counterparts. The calibration exercise

suggests that the decline in public R&D matters for aggregate growth and inequality: it explains

around a third of the decline in TFP from 1950 to 2017 and a third of the rise in inequality of

profits between firms. To save space, proofs and derivations are relegated to Appendix G. Table

G.22 summarizes the notation used.

6.1. Firms. Time is continuous and there are three agents in the economy; researchers (R), work-

ers (L) and firm owners indexed by i, of which there is a unit mass at all times. Total population is

fixed and equal to N = R + L + 1. Firms’ productivity growth is determined by three forces: their

R&D effort, idiosyncratic deviations (’luck’), and an aggregate component capturing the contribu-

tion of spillovers to growth. I first present firms’ static problem before turning to their dynamic

one.

Static firm problem. Each firm produces one variety in a monopolistically competitive environ-

ment. Firms’ output, denoted yi, is then aggregated into a final output good via a CES production

function. This final output good is the numéraire and is equal to GDP (time subscript omitted).

Y :=
(∫ 1

0
yθ

i di
) 1

θ

0 < θ < 1 (9)

where θ is the substitution parameter: a higher value of θ implies an easier substitutability

between inputs.38 A monopolist’s production technology is linear in labor; with productivity zi,

firm i produces a quantity yi = zili with li workers. A firm’s productivity zi is made of two

components: an aggregate term common to all firms Ψ, and an idiosyncratic term ai such that

zi = Ψai. The static problem of firm i is therefore to choose yi, pi and li in every period to maximize

38θ = 1 means the goods are perfect substitutes, θ = 0 gives a Cobb-Douglas production function and
θ = −∞ means the yi’s perfect complements. Estimates of θ from the literature suggest that its value lies
between 0 and 1 i.e. intermediate goods are easily substitutable.
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instantaneous profits, given its productivity and the inverse demand for its variety. Firms take the

equilibrium value of the wage rate, w, as given and solve:

max
yi ,pi ,li

yi pi − wli subject to yi = zili and pi =

(
Y
yi

)1−θ

(10)

There is a measure L of workers who supply labor inelastically. The equilibrium allocation of

labor across monopolists is constrained by the labor market clearing condition:
∫ 1

0
lidi = L. The

following lemma summarizes the solution to the static optimization problem of firms.

Lemma 1 (Static equilibrium). At any instant

(1) The optimal output of firm i is y∗i = Y
( ai

A

) 1
1−θ

and labor demand is l∗i =
Y
Ψ

(
aθ

i
A

) 1
1−θ

.

(2) Firm i’s profits are π(ai)
∗ = Y

( ai

A

) θ
1−θ

(1 − θ) and its wage bill is wl∗i = Y
( ai

A

) θ
1−θ

θ.

(3) The wage rate and aggregate output are equal to w = θAΨ and Y = LAΨ, respectively.

where A :=
(∫ 1

0
a

θ
1−θ

i di
) 1−θ

θ

is the idiosyncratic productivity index of the economy.

Proof. See Appendix G.3 □

Dynamic firm problem. With the static problem of firms solved, I now introduce time subscripts

to describe firms’ productivity dynamics. Firms’ idiosyncratic productivities are stochastic: they

follow a geometric Brownian motion with drift rate α(eit, βit). The drift rate depends on a firm’s

flow research effort, eit and the type of R&D it performs, described by the indicator βit (for ’basic’).

βit = 1 if it performs basic research and βit = 0 otherwise. Formally,

dait

ait
= α(eit, βit)dt + νdBt (11)

where ν is the standard deviation rate of productivity and dBt denotes the standard normal

Brownian increment. Mirroring the set up of the estimating equation, the drift rate of firm i’s

productivity takes the form: α(eit, βit) := eitϕ(βit), where ϕ(βit) is the elasticity of productivity

growth to R&D effort. A firm doing basic research (β = 1) will experience a productivity increase

of eitϕ1. On the other hand, if β = 0 and the firm funds applied research, its productivity increases

by eitϕ0. To capture the fact that fundamental R&D does not translate directly into higher produc-

tivity and is harder to appropriate by the investing firm, I assume that ϕ0 > ϕ1. In other words,

firms experience a larger productivity increase when they invest in applied research.
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In reality, the ’basicness’ of R&D is more a continuum than a clear-cut characteristic. The sim-

ple categorization I use here is merely a simplifying assumption. However, modelling the pro-

ductivity increase from R&D as a function of a continuous measure of R&D ’basicness’ can be

accommodated by the model.39

These productivity dynamics matter to firm owners insofar as they affect their profits. Out of

their immediate post-production profits denoted by π(ait)
∗, firm owner need to pay taxes at rate

τt, they need to fund R&D expenses at rate eit and they can consume what remains. They derive

log utility from these post-tax and post-R&D profits so that flow utility is ln π(ait)
∗(1 − eit − τt).

Finally, the last factor affecting firm owners’ utility is the rate of creative destruction. Firm

owners can be replaced in two ways. First, they can be replaced by individuals who have found

a better version of their variety. In the model, this process of creative destruction materializes

through an endogenously determined Poisson rate of exit δt. This is the classic Schumpeterian

creative destruction and it is an equilibrium quantity. Second, they face a constant and exogenous

death rate δ akin to the probability of retiring or actually dying. This second mechanism is in-

variant to the amount of innovation in the economy, unlike δt. There is no outside option for firm

owners who are replaced.

Putting it all together, a firm owner solves:

max
eit,βit

E0

∫ ∞

0
e−ρt ln π(ait)

∗(1 − eit − τt)dt

subject to
dait

ait
= α(eit, βit)dt + νdBt

with α(eit, βit) = eitϕ(βit)

and Poisson rate of exit δt + δ

(12)

where ρ is the discount rate. Omitting i and t subscripts here as it does not cause confusion, one

can write the Hamilton-Jacobi-Bellman equation of a firm with productivity a as

ρv(a, t) = max
e,β

ln π(a)∗(1 − e − τ) + α(e, β)ava(a, t) +
σ2

2
a2vaa(a, t) + vt(a, t)− (δ + δ)v(a, t)

(13)

where va(a, t) and vaa(a, t) stand for the first and second derivatives of v(a, t) with respect to a,

respectively. The value of owning a firm with productivity a is therefore constituted of the utility

flow of profits after taxes and R&D expenditures, the change in firm value due to research effort

and luck, and the expected loss associated with creative destruction.

39For instance, if βit is instead the share of R&D expenditures dedicated to basic research, the results pre-
sented in this paper hold if ϕ(βit) is a strictly decreasing function. I.e. the more a firm invests in basic
research, the less it can generate productivity increments from R&D that it benefits from.
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6.2. New ideas. New ideas play a central role in the model. They are created by researchers hired

by firms or by the government and may come from basic or applied research. Beyond the larger

impact it has on productivity growth, applied R&D also differs from basic R&D in how it affects

ideas. These differences have been documented in the stylized facts of section 3: applied R&D is

less likely to generate ’breakthrough’ innovations (fact 2) and it is less likely to spill over to the

rest of the economy (fact 3). I model these differences explicitly in this section.

Differences between basic and applied R&D. The generation of new ideas depends on the total num-

ber of researchers and the type of research they do. When firms spend a share e of their profits

on R&D, they hire an aggregate number of researchers R = eΠ/wp . wp is the research wage in

the private sector, which is different from the wage in the public sector, and Π =
∫ 1

0 π(ai)
∗di is

aggregate profits. If R researchers are doing basic R&D, they get new basic ideas at a Poisson rate

of λ ideas per researcher such that I1 = λR. If they conduct applied R&D, they get applied ideas

at the same rate: I0 = λR. In other words, generating the same flow of basic or applied ideas is

equally hard.

Importantly though, when researchers do basic R&D, a subset of the ideas they generate are

breakthroughs, denoted B1 ⊂ I1. Breakthroughs from basic R&D arrive at rate λ1 such that B1 =

λ1R. If instead they work on applied R&D, the breakthrough rate λ0 is lower and breakthroughs

are more rare for the same research effort i.e. B0 = λ0R < B1. This is consistent with the evidence

provided in the stylized facts section that has shown that public R&D (which tends to be more

fundamental) produces patents that are more ahead of their time, even after controlling for the

cost of research. Table C.14 in the appendix also reports evidence that publicly-funded patents

score higher on the popular measure of patent disruptiveness introduced by Kelly et al. (2021).

The second key difference between basic and applied R&D is that basic R&D spills over more

easily to the rest of the economy. To capture this feature, I assume that λR ideas generated by

applied research generate (λR)ε spillovers to the rest of the economy, while the same number of

basic ideas would generate (λR)γ spillovers, with γ > ε. This captures the feature that an agent

will experience the same growth in patents if it invest in basic or applied research (both types of

research are equally costly), but when the research is more basic, it spills over more easily to other

firms. This is consistent with fact 3 of section 3. The table below summarizes the differences of

impact between basic and applied R&D when the same number of researchers, R, is hired.

Spillovers. Applied and basic ideas combine in a Cobb-Douglas aggregator to generate productivity-

enhancing spillovers. With R1 basic researchers and R0 applied ones, the total amount of spillovers

in the economy is given by ln(λR1)
γ(λR0)ϵ, where the log introduces some curvature in the re-

turns to spillovers. In other words, ideas that can be turned into productivity-enhancing machines

or processes are harder to come by when there are already a lot of them.
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Basic Applied

Researchers R
Investment Rwp
Productivity increase Rwpϕ1/π < Rwpϕ0/π
Spillovers (λR)γ > (λR)ϵ

Breakthroughs λ1R > λ0R

TABLE 5. Impacts of R&D on productivity, spillovers and breakthroughs:
Basic v. applied

This functional form captures an important aspect of basic and applied R&D; they are com-

plements in the generation of knowledge spillovers that can be used for productivity growth.

For example, the fundamental insights from Shannon’s information theory are most useful when

combined with the more applied invention of programming languages in order to create the file-

compression algorithms that are so crucial to the digital economy. This modelling choice is moti-

vated by several pieces of evidence. First, the SSIV results of section 5 have shown that firm’s own

R&D, which is more applied, is positively impacted by increases in public R&D spillovers, which

tend to be more basic. Second, Moretti et al. (2023) have documented that both at the firm and at the

industry level, private R&D tends to increase when public R&D increases. Third, evidence from

quasi-experimental variation provided by Azoulay et al. (2019) and Myers and Lanahan (2022)

provide compelling evidence that publicly-funded R&D leads to a large increase in the number

of follow-up patents. This aspect of innovative output is consistent with a view of innovation as

being both cumulative and combinatorial: discoveries by others make it easier to discover new

ideas. The flow of new productivity-enhancing ideas generated through spillovers in the econ-

omy at large is then given by ṅt := ln(λR1)
γ(λR0)ϵ. To simplify the aggregation, spillovers are

assumed to be beneficial to all varieties. They are common to all firms and truly capture the wider

social benefits that cannot be internalized by firms.

Note that researchers can be in firms, in universities and in governments. They do not necessar-

ily need to perform the R&D intramurally i.e. where the R&D money comes from. In the data, this

is particularly true for state-funded R&D; A whole 21% of R&D funded by the US federal govern-

ment was performed by private businesses in 2021, and 28% was performed by universities.40

6.3. Government. The government also conducts R&D, although with a different objective than

firms. It cares about innovation only insofar as it generates breakthroughs findings. Breakthrough

innovations are used for whichever cause the government is concerned with at a given instant:

like finding a new vaccine to halt the progression of a pandemic, developing new batteries because

40Data from the National Science Foundation. Table 6, row 145. Accessed January 10th, 2024.
ncses.nsf.gov/data-collections/national-patterns/2021#data
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the price of oil is high, or creating a new weapon.41 I assume that, at all times, the government

needs to satisfy a simple budget constraint that equates expenditures on publicly-funded R&D

with aggregate revenue raised by taxing corporate profits. There is no other source of taxation,

no government borrowing (no savings technology for that matter) and no other government ex-

penditures. This is a simplification that keeps the model focused and is rather consistent with the

recent US fiscal history.42 In other words, corporate tax totally and exclusively funds government

R&D in this model. With its budget raised exclusively from corporate profit tax, the government

then allocates funds to basic and applied research with the aim of maximizing the arrival rate of

breakthroughs. Formally, the government’s problem is

max
Rg1,Rg0

λ1Rg1 + λ0Rg0 subject to τΠ = wg(Rg1 + Rg0) (14)

where Rg1 and Rg0 are the numbers of publicly-paid researchers doing basic and applied re-

search, respectively, and wg is the wage of publicly-paid researchers. In line with the identification

assumption of the SSIV exercise, the tax rate τ is taken to be exogenous and is driven by forces

outside of the model. A given tax rate fully determines government revenues (and thus public

R&D expenditures) given an existing distribution of firm profits.44

R&D choices. The different properties of basic and applied R&D, combined with the different ob-

jectives of firms and the government lead to a complete specialization of the government in basic

research and of the private sector in applied research. Furthermore the R&D effort of firms is

constant across the firm size distribution. Proposition 1 below and its proof formalize this result.

41This breakthrough-oriented objective of government-funded research is consistent with US historical ev-
idence. It is best illustrated by the general message of the seminal report ‘Science: The Endless Fron-
tier’, commissioned by president Franklin D. Roosevelt to translate war-time research efforts into impactful
peace-time innovations (Bush, 1945). Its introductory lines read ‘Progress in the war against disease de-
pends upon a flow of new scientific knowledge. New products, new industries, and more jobs require
continuous additions to knowledge of the laws of nature, and the application of that knowledge to practi-
cal purposes. Similarly, our defense against aggression demands new knowledge so that we can develop
new and improved weapons. This essential, new knowledge can be obtained only through basic scientific
research.’
42From the 1980s onward, corporate income tax as a share of US GDP was between 1 and 2.5%, not too
far from the 0.7 to 1% of GDP dedicated to publicly-funded R&D.43 It is slightly less consistent with the
immediate postwar period, where corporate income tax revenue accounted for 3.5% of GDP on average
between 1950 and 1980, while public R&D was, on average, 1.2% of GDP. Because the two amounts are
fairly close, I maintain this simplifying assumption throughout.
44Using τ as an exogenous variable I can adjust rather than the result of an agent’s optimization allows
me to make inequality between firms and aggregate productivity growth direct functions of the allocation
of R&D resources in the economy. It also makes sense to model it in this way if one is thinking about the
government in my model as consisting solely of decision makers in charge of the R&D budgets of federal
agencies. These decision makers receive a research budget from another branch of the government who
sets τ with a different objective function than theirs.
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Proposition 1 (Endogenous choices of R&D). Given the problem of firms in (12) and the problem of the

government in (14):

(1) Rg = Rg1: the government performs basic research, exclusively

(2) Ri = Ri0 ∀i: firms perform applied research, exclusively

(3) The optimal research effort of firms is unique, independent of firm size and is given by

e∗ = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ0
(15)

Proof. See Appendix G.6 □

The first and second points of this proposition capture the well-known issue of underprovision

of public goods. Firms will not be willing to invest in basic R&D if it costs them more, in terms of

lost productivity gains, even though it raises aggregate productivity through spillovers by a lot.

This prediction of the model is consistent with empirical evidence on corporate science. Arora

et al. (2021a), for instance, find that firms do little basic research as proxied by their scientific

publications; these scientific publications are very rare for firms, even the patent-filing ones.45

Complementing this finding, Akcigit et al. (2020) use survey data on the R&D activities of French

firms to show that only between 4 and 10% of firms invest in basic research, and only very large

firms have non-negligible investments in basic research.46

Point (3) of the proposition shows that research effort does not depend on firm size. Because

the growth rate of firm’s idiosyncradic productivity is constant (da/a = e∗ϕ0), this result yields

Gibrat’s law, the empirical regularity whereby firms of different sizes grow at the same rate, con-

ditional on survival and age. Moreover, the fact that research effort among R&D-performing firms

scales proportionately with firm size finds strong empirical support in the data.47

Equation (15) provides intuitive comparative statics. The R&D effort of firms is increasing in the

substitubability of varieties θ because productivity gains translate into larger profit gains when θ is

high. It also increases in the return to efforts ϕ0. It decreases in ’impatience’ ρ and the probability

of being replaced δ + δ because firm owners enjoy the marginal profit streams over a shorter

period of time, in expectation. Finally, and perhaps most importantly for this paper, research effort

decreases in the tax rate τ. The negative relationship between research effort and taxes captures

the disincentivizing role of taxes on innovation, which has been well documented in the literature.

Akcigit et al. (2022), for instance, report large elasticities of innovation to the ‘keep rate’ (1 − τ) of

45They find that 2,535 firms out of 4,608 who already file patents (55%) have at least a publication in the 1980-
2006 period. Moreover, more than 50% of these firms file 0 publications in any given year (table 2, row
6).
46Figure 5 of Akcigit et al. (2020)
47In my sample of firms, investment in R&D typically account for 10% of firm sales and remains a constant
share of sales across the firm size distribution.
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personal income and corporate taxation in the United States. A 1% increase in the corporate tax

keep rate increases patent production by a whole 0.49% according to their estimates.48

6.4. Creative destruction. Incumbent firm owners can be displaced by workers who discover a

better version of their variety. New ideas occur to them through the spillovers of government and

private research described earlier such that the Poisson rate of new, viable business ideas at each

instant is equal to the amount of spillovers ṅt := ln(λR1)
γ(λR0)ϵ. I assume that only a fraction

χ of these viable ideas end up being implemented and eventually displace an incumbent. When

a worker replaces an incumbent, they inherit the incumbent’s idiosyncratic productivity a. The

incumbent, once replaced, becomes a worker. This process leaves the productivity distribution of

firms unaffected by creative destruction on a BGP: incumbents are immediately replaced by new

firm owners with the same productivity. The shape of a productivity distribution under a high

equilibrium rate of creative destruction will however be different than under a low one.

The rate of endogenous creative destruction is therefore equal to the rate of spillovers from new

ideas, scaled down by the fraction of successfully implemented ideas

δ := χṅt (16)

More spillovers make the entry of new businesses easier.

Finally, firm owners can also be replaced at an exogenous rate δ, already previewed in the

firm problem. In that case, they are replaced by new, young firm owners with productivity a0

set to be equal to the lowest idiosyncratic productivity at a given instant. In other words, a0 is a

reflecting barrier for firm productivity. This exogenous replacement process yields well-behaved

productivity distributions (Gabaix, 2009) and is used here for tractability.

6.5. The distribution of firms. At all times, the number of entrants is equal to the number of firms

who exit so that the total mass of active firms remains equal to 1. With the creative destruction

process described in section 6.4 and the random productivity process (11), the following known

result follows;49 the distribution of firm productivities, f (a, t), evolves over time according to the

Kolmogorov Forward Equation (KFE) given by

∂t f (a, t) = −δ f (a, t)− α∂a[a f (a, t)] +
ν2

2
∂aa[a2 f (a, t)] (17)

where ∂t f = ∂ f /∂t, ∂a f = ∂ f /∂a, and ∂aa f = ∂2 f /∂a2. To economize on notation, α stands

for α(e∗, β∗). On a balanced-growth path, the distribution of firm productivities is stationary i.e.

48The corresponding elasticity for the personal income tax rate is even bigger, at 0.8% more patents by 1%
increases in the keep rate. Both of these effects, of corporate and personal income tax, are larger at the state
level due to migration and R&D re-location responses.
49See for instance Dixit and Pindyck (1994), p. 89 for a derivation.
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f (a, t) = f (a) ∀a, t. This stationary distribution must therefore follow the stationary version of

the KFE:

0 = −δ f (a)− α∂a[a f (a)] +
ν2

2
∂aa[a2 f (a)] (18)

Lemma 2 below shows that the distribution of firm productivities satisfying (18) is a power law.

It also shows that the Pareto tail exponent is a function of α (which depends on δ through e).

Lemma 2 (Stationary distribution of firms). On a balanced-growth path

• The stationary distribution of productivities is a power law with density f (a) = Ca−ζ−1 over the

support [a0, ∞).

• The Pareto tail exponent ζ is given by

ζ = − α

ν2 +
1
2
+

√(
α

ν2 − 1
2

)2

+
2δ

ν2 (19)

• and C = ζa0
ζ

Proof. See Appendix G.7 □

ζ is decreasing in α (i.e. inequality is increasing in the drift). This means that inequality is accen-

tuated when the rewards to innovating are higher such as when ϕ0 and θ are higher. Inequality

decreases when innovation is disincentivized, for instance when firm owners are more likely to

be replaced (higher δ + δ), when the tax rate is higher, or when they are more impatient (higher

ρ). The split between public and private R&D will affect inequality through endogenous creative

destruction δ: a high probability of being replaced makes firms less likely to grow very large and

thus decreases inequality.

Notably, the distribution of a is stationary on a BGP, while the distribution of π(a) is a non-

stationary travelling wave. This highlights where aggregate growth comes from in the model;

spillovers are a ’tide that lift all boats’ by multiplicatively scaling up firm idiosyncratic productiv-

ities (and thus profits) by Ψ.

6.6. Equilibrium. I can now relate aggregate growth and inequality to the allocation of researchers.

To do so, I first describe how spillovers affect aggregate growth, I then show how the tax rate

determines the key allocation of the model–the split of researchers between public and private

R&D–before defining the BGP equilibrium and proving the main result of the paper.

The common productivity term takes the form Ψt = Γnt , where Γ is the step size of produc-

tivity increments and nt is the stock of spillovers at time t. This is the standard quality ladder of

endogenous growth models. Hence firm productivity is zit = Γnt ait. From lemma 1, the aggregate

productivity growth rate of the economy is the same as that of GDP per capita and is equal to
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g = ṅt ln Γ (20)

where ṅt = ln(λR1)
γ(λR0)ε as established earlier. Taking logs and time differences of zit = Γnt ait,

I get the estimating equation of section 4.

∆ ln(zit) = ϕ0 eit︸︷︷︸
own

R&D flow

+γ ln(λR1)︸ ︷︷ ︸
flow of

basic ideas

+ε ln(λR0)︸ ︷︷ ︸
flow of

applied ideas

(21)

Researchers hired by firms receive a proportional wage premium Λ over what they would earn

if they were funded by the government, such that wp = Λwg. This is a reduced-form way of

capturing a well-documented feature of the labor market: private-sector workers typically enjoy

a 5-to-30% wage premium over what they would earn in the public sector (Murphy et al., 2020).

The research wage bill of firms is eΠ = wpRp and the research wage bill of the government is

τΠ = wgRp. Given an exogenous tax rate τ and the research labor constraint R = Rg + Rp, the

wage rates for researchers adjusts to clear the market. The number of researchers in each sector is

then given by two simple relationships;

Rg =
R

e/Λτ + 1
and Rp =

R
Λτ/e + 1

(22)

The comparative statics are as follows. Publicly-funded researchers become more numerous

when τ increases. They also become more numerous when the premium paid to private re-

searchers is bigger, all else equal, because firms can hire fewer researchers and thus leave more

of them to the public sector. In contrast, a bigger research effort by firms increases the number of

private researchers to the detriment of publicly-funded ones.

The BGP equilibrium is characterized by 12 key endogenous variables—-Y, yi, ai, L, li, e, Rp,

Rg, ṅ, δ, βg, βi—-and an equal number of equations, listed in Table G.23 in the appendix. The

definition of a BGP equilibrium is standard. Given a tax rate τ, (i) firm owners choose yi, li, ei

and βi to maximize the present discounted value of owning a firm, (ii) the government chooses

the type of R&D that maximizes the arrival rate of breakthroughs, (iii) workers and researchers

supply labour inelastically and (iv) the wage rates of workers and researchers clear their respective

labor markets. These interactions yield two coupled functions ( f , v) : [a0, ∞) → R which are

the stationary density of firm productivities and the value function of firm owners. On a BGP,

aggregate productivity, wages and output per capita grow at g. Incumbents’ profits and wage

bills grow at g +
θ

1 − θ
eϕ0, on average, as long as they do not exit.

Through its effect on the allocation of researchers to basic (public) R&D and applied (private)

R&D, τ affects the strength of spillovers in the economy, which in turn affects aggregate growth
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via Γnt and inequality via δ. Proposition 2 below shows how growth and firm inequality evolve as

a function of the allocation of researchers to basic and applied research.

Proposition 2 (Taxes, growth and inequality). On balanced-growth paths:

(1) Inequality of productivity between firms is U-shaped in the share of researchers in the private sector.

(2) The aggregate productivity growth rate of the economy is inverted U-shaped in the share of re-

searchers in the private sector.

(3) There is a unique, growth-maximizing and inequality-minimizing tax rate given by

τ∗ =
γe∗

εΛ
(23)

and the associated share of government researchers is
Rg

∗

R
=

1
ε/γ + 1

Proof. See Appendix G.8. □

Two properties of spillovers are key to explaining proposition 2: the complementarity between

the two types of R&D and the decreasing marginal impact of each on the flow of overall spillovers.

At low levels of tax, spillovers are dominated by spillovers from private research because the gov-

ernment has little resources to fund basic research and because R&D by firms is strongly incen-

tivized by low taxes. As the tax rate rises, the level of spillovers increases because public spillovers

get larger and have a high marginal impact on overall spillovers. At τ∗, the marginal impacts of

basic and applied spillovers are equalized. Finally, when the tax rate is getting too high, research

by private firms is disincentivized and private spillovers fall out of balance. Aggregate spillovers

are falling too.

The growth-maximizing tax rate τ is increasing in the strength of publicly-funded spillovers (γ)

and decreasing in the strength of privately-funded spillovers (ε). Interestingly, it is increasing in

private research effort: just like private R&D is complementary to public R&D, the reverse is also

true and high levels of private R&D make public R&D more impactful. Finally, it decreases in the

private wage premium because a lower tax rate is needed to fund the optimal number of public

researchers when Λ is low.

6.7. Calibration. I now evaluate the ability of the model to explain (part of) the decline in TFP and

the increase in firm inequality, from 1950 to 2017. To do so, I calibrate it with standard parameter

values taken from the literature such that it matches the growth rate of TFP (g) and the Pareto tail

exponent (ζ) in the immediate postwar period. The model is stylized and the causes of the secular

decline in productivity in the US are multiple. My goal is therefore not to explain all of the TFP

deceleration in the US postwar history but to highlight the role public R&D may play as one cause

of the slowdown. Complementary explanations of the decline in TFP growth and the rise in firm
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inequality are discussed at the end of this section. I present here a sequence of BGP equilibria and

I elaborate more on the calibration exercise in Appendix H.

Set up. The tractability of the model makes the calibration exercise straightforward. I have indeed

obtained closed-form expressions for the two quantities I am interested in; the Pareto tail expo-

nent of inequality between firms (19) and the growth rate of aggregate productivity (20). Given

parameter values of ν, θ, ϕ0, γ, ε, ρ, Γ, λ, Λ, χ, δ and a time series of tax rates τt, I can obtain the

values of equilibrium quantities e∗, δ, ṅt, which give me a sequence of values for g and ζ.

Values of ρ, ν, θ, Λ, Γ and δ are taken from the macro literature, γ and ε are taken from my empir-

ical exercises, χ is calibrated so that the exit rate takes on a realistic value, λ and ϕ0 are internally

calibrated to match the values of g and ζ at the beginning of the period. τ, the main exogenous

input to the model is set equal to the effective corporate tax rate in the US at the beginning of the

period. It is then set to follow the share of public R&D in overall R&D. The tax rate set in this

way closely follow the historical time series of the effective corporate tax rate (see Figure 20 in the

Appendix). Appendix H describes the data sources used in the exercise and provides more in-

formation about the calibration procedure. Table 6 lists the parameter values and motivates their

choices.

Results. The results of the calibration exercise suggest that the decline in the share of GDP dedi-

cated to public R&D can explain a substantial share of the deceleration in TFP and a substantial

share of the rise in inequality between firms. Starting with TFP growth, Figure 7a shows how the

growth rate of aggregate TFP predicted by the model compares to the data. Both series start at the

same growth rate of 3.3% in the early 1950s, by construction. Immediately after, the growth rate

predicted by the model increases as spillovers from the rise in public R&D in the 1950s bear fruits

and drive private firms’ productivity up. Soon after though, the balance of spillovers starts to tilt

toward spillovers from private R&D. Because the elasticity of applied spillovers (from the private

sector) is lower than that of basic spillovers (from the public sector), the growth-maximizing mix

of spillovers will have more public than private R&D. The model reflects this shift by lowering

the equilibrium growth rate of TFP from the 70s to present days. Over the entire period, gmodel

decreases from 3.33% to 2.46%, a 0.86 percentage point decrease. In the data, TFP growth fell from

3.33% to 0.86% (-2.47pp). In other words, the model accounts for slightly more than a third of the

fall in TFP growth over the period (35%).

Turning to inequality between firms, the historical data shows a continuous increase in inequal-

ity from 1952 to 2018, as documented by Kwon et al. (2022) and shown in 7b. It is more intuitive to

refer to power law inequality, defined as ξ := 1/ζ, when describing changes in inequality between

firms rather than to the Pareto tail exponent ζ. Higher levels of inequality yield higher ξ and the

calibration exercise uses power law inequality rather than the Pareto tail exponent as an object of
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Parameter Value Source/Meaning

Government
τ 0.34 Set equal to the effective corporate tax rate in 1947

Then inferred from the changes in the public
R&D budget share of total R&D in the US

Λ 1.25 Public-private wage gap at 50th percentile
from Murphy et al. (2020), p. 284

Firms
ν 0.4 Luttmer (2007), p.1132
ϕ0 0.1 Middle-of-the-road value of estimates of VA elasticity to R&D,

from review by Hall et al. (2010)
ρ 0.01 Standard
δ 0.035 Employment-weighted exit rate

from Decker et al. (2016) (p. 9)
ζ0 1.109 Observed in the data (tail exponent in 1952)
g0 0.033 Observed in the data (average TFP growth rate in 1950-1955)
Γ 1.4 Jones and Kim (2018), p.1809
θ 3/4 Standard

Research and spillovers
γ 0.04 Table 1, column (4)
ε γ/3 A third of γ, from section 5.2
λ 0.12 Internally calibrated to match ζ0

χ 0.05 Internally calibrated to match g0

TABLE 6. Calibrated parameter values

interest. I rely on Kwon et al. (2022)’s series on corporate assets here as this series spans the entire

period I am interested in. Series on receipts and net income (which would have a more direct

counterpart in my model) are unfortunately not available for the full period. It is however notable

that all three series on inequality of assets, receipts and net income yield almost identical Pareto

exponents over the periods when they overlap. The increase in inequality predicted by the model,

in contrast to the data, is not monotonic. After starting from the same level in the beginning of

the 1950s (by construction), it decreases down to its lowest level in the middle of the 1960s. The

model ascribes this decrease in inequality to the rise of spillovers in the late 1950s and early 1960s.

After this temporary fall, inequality increases until 2017 up to a value of ξ implying that the top

1% share of firms by assets owns 72% of all firm assets. The corresponding figure in the data is

95% in 2018. In sum, the model can explain 37% of the rise in inequality between firms from the

1950s to 2017.
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FIGURE 7. Calibration results
Notes: Parameter values are either estimated in my empirical exercises or taken from the literature. See
Table 6 for more details. The Pareto firm inequality parameter ξ can be given an intuitive interpretation
by using the following property of Pareto distributions. The top share of the p% biggest firms is given by
(100/p)ξ−1. Applying this insight to the empirical time series of 7b, one gets that the top 1% share of firm
assets was around 60% in the early 1950s and 95% in the late 2010s.

Discussion. While the calibration exercise suggests that the change in R&D funding can account for

a large part of the decline in TFP growth, it is unlikely to be the only driver of long-term changes

in TFP. An alternative, yet related, explanation builds upon the idea that ‘ideas are getting harder

to find’ (Bloom et al., 2020): innovation-driven improvements in TFP were easier to achieve in

previous decades. My theory offers a potential cause of the ‘ideas are harder to find’ hypothesis:

maybe the rate of growth of ideas is a function of the type of research conducted by a society,

applied or basic. The steady decline in public R&D in the US could be a cause of the fact that ideas

are harder to find.

Over shorter time horizons, other theories may be better at explaining variations in TFP. TFP

growth is indeed fairly cyclical and the decline in public R&D is more of a long-term trend. De Rid-

der (Forthcoming), for instance, ascribes the large productivity growth of the late 1990s and its

subsequent decline to the rise of corporate investments in intangible assets (like software). Alter-

natively, Liu et al. (2022) build a theory linking the decline in interest rates to a stronger investment

response by market leaders than by followers, which leads to a joint rise in concentration and a

slowdown of growth.

Alongside these theories, my model and its calibration serve as a proof of concept that the

decline in public R&D may be an alternative (and complementary) mechanism behind the fall in

productivity growth and the rise in firm inequality.
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7. CONCLUSION

Through the lens of a 70-year panel of firms matched to patents, two quasi-experimental IV

strategies and a calibrated model of growth, this project has provided evidence that the split be-

tween publicly and privately-funded R&D matters for the intensity of knowledge spillovers in an

economy. It has also shown that this public v. private partition has an impact on the growth rate

of productivity and on how unequal the firm size distribution is. The core distinction between

publicly and privately-funded R&D that drives these results stems from the fact that the former is

more fundamental than the latter. The two empirical exercises show that public R&D positively im-

pacts private firms’ productivity growth through spillovers over the long run (SSIV), and there is

tentative evidence that this impact is at least twice as big as that of private R&D (patent examiner

instrument). This difference of impact matters in the aggregate, as evidenced by the fact that the

decline in public R&D in the US can explain a third of the deceleration in TFP from the 1950s to

present days, and a third of the rise in inequality between firms, according to my calibrated model

of growth. While the causes of the secular decline in TFP growth are multifaceted, my findings

point to an underappreciated factor: public R&D as a source of impactful spillovers for private

firms.

This line of research can contribute to the ongoing debate in the US and Europe about the role

of public R&D investments in fostering productivity growth and the relevance of basic R&D in-

vestments in industrial policy. However, the extent to which the conclusions of this project can be

generalized to countries other than the US (or other advanced economies) is an open question. The

American economy over the post-WWII period is indeed unique in two important ways. First, the

US has been at the technological frontier in many domains over this period. In this respect, fun-

damental R&D funded by the government may be the most appropriate tool to push the frontier.

For instance, Ahmadpoor and Jones (2017) and the stylized facts of section 3 provide evidence

that patents drawing heavily on scientific papers tend to be the most impactful (as measured by

their citation counts). In contrast, funding or subsidizing applied R&D may be the most adequate

strategy for an economy trying to catch up with the frontier. Second, the US innovation system

has been distinctively capable of translating insights from basic R&D into innovative products

and services due to a strong innovation pipeline from universities to corporate labs and to final

production, at least until the 1980s (Arora et al., 2020).

Understanding the roles government can play in accelerating productivity growth is a fertile

ground for future research. In particular, the research presented here can be extended in several

ways. Valuable extension of this work include a deeper exploration of the specific mechanisms

whereby publicly-funded R&D generates more spillovers. Previous evidence suggests that the

different incentives researchers face when their work is funded by public versus private money
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may be important (Babina et al., 2023). The exact ways in which these spillover operate (through

the movement of scientists or public-private partnerships for instance) is another question worthy

of exploration. Finally, it would also be interesting to jointly assess the respective impacts of

publicly-funded R&D spillovers and government demand shocks on productivity growth, within

a unified empirical framework.
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ADÃO, R., M. KOLESÁR, AND E. MORALES (2019): “Shift-share designs: Theory and inference,” The Quarterly Journal

of Economics, 134, 1949–2010. [Cited on pages 2, 20, 25, 26, 27, 28, 30, 31, 33, 35, and 91.]

ADAMS, J. D. (1990): “Fundamental stocks of knowledge and productivity growth,” Journal of political economy, 98,

673–702. [Cited on page 18.]

AGRAWAL, A., C. ROSELL, AND T. S. SIMCOE (2014): Do Tax Credits Affect R & D Expenditures by Small Firms?: Evidence

from Canada. [Cited on page 67.]

AHMADPOOR, M. AND B. F. JONES (2017): “The dual frontier: Patented inventions and prior scientific advance,”

Science, 357, 583–587. [Cited on pages 18, 53, and 89.]

AKCIGIT, U. AND S. T. ATES (2019): “Ten facts on declining business dynamism and lessons from endogenous growth

theory,” Tech. rep., National Bureau of Economic Research. [Cited on page 4.]

——— (2022): “What Happened to US Business Dynamism?” Tech. rep. [Cited on page 33.]

AKCIGIT, U., J. GRIGSBY, T. NICHOLAS, AND S. STANTCHEVA (2022): “Taxation and Innovation in the Twentieth

Century,” The Quarterly Journal of Economics, 137, 329–385. [Cited on page 45.]

AKCIGIT, U., D. HANLEY, AND N. SERRANO-VELARDE (2020): “Back to Basics: Basic Research Spillovers, Innovation

Policy, and Growth,” The Review of Economic Studies, 88, 1–43. [Cited on pages 4, 45, and 89.]

AKCIGIT, U. AND W. R. KERR (2018): “Growth through heterogeneous innovations,” Journal of Political Economy, 126,

1374–1443. [Cited on page 5.]

ALBERT, M. B., D. AVERY, F. NARIN, AND P. MCALLISTER (1991): “Direct validation of citation counts as indicators of

industrially important patents,” Research policy, 20, 251–259. [Cited on page 79.]

ANTOLIN-DIAZ, J. AND P. SURICO (2022): The long-run effects of government spending, Centre for Economic Policy Re-

search. [Cited on pages 4 and 19.]

ARORA, A., S. BELENZON, AND A. PATACCONI (2018): “The decline of science in corporate R&D,” Strategic Management

Journal, 39, 3–32. [Cited on page 13.]

ARORA, A., S. BELENZON, A. PATACCONI, AND J. SUH (2020): “The Changing Structure of American Innovation:

Some Cautionary Remarks for Economic Growth,” Innovation Policy and the Economy, 20, 39–93. [Cited on page 53.]

ARORA, A., S. BELENZON, AND L. SHEER (2021a): “Knowledge spillovers and corporate investment in scientific re-

search,” American Economic Review, 111, 871–98. [Cited on pages 5, 45, and 89.]

——— (2021b): “Matching patents to compustat firms, 1980–2015: Dynamic reassignment, name changes, and owner-

ship structures,” Research Policy, 50, 104217. [Cited on pages 5, 6, 7, 74, 75, and 76.]

AUDRETSCH, D. B. AND M. VIVARELLI (1996): “Firms size and R&D spillovers: Evidence from Italy,” Small Business

Economics, 8, 249–258. [Cited on page 33.]

AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, AND J. VAN REENEN (2020): “The Fall of the Labor Share and the

Rise of Superstar Firms*,” The Quarterly Journal of Economics, 135, 645–709. [Cited on page 33.]

AZOULAY, P., J. S. GRAFF ZIVIN, D. LI, AND B. N. SAMPAT (2019): “Public R&D investments and private-sector

patenting: evidence from NIH funding rules,” The Review of economic studies, 86, 117–152. [Cited on pages 3, 13, 27,

and 43.]

55



BABINA, T., A. X. HE, S. T. HOWELL, E. R. PERLMAN, AND J. STAUDT (2023): “Cutting the Innovation Engine: How

Federal Funding Shocks Affect University Patenting, Entrepreneurship, and Publications*,” The Quarterly Journal of

Economics, 138, 895–954. [Cited on pages 12, 14, and 54.]

BALCONI, M., S. BRUSONI, AND L. ORSENIGO (2010): “In defence of the linear model: An essay,” Research policy, 39,

1–13. [Cited on page 89.]

BELENZON, S. AND L. C. CIOACA (2022): “Guaranteed Public Demand and Corporate Scientific Research,” . [Cited on

page 4.]

BELENZON, S. AND M. SCHANKERMAN (2013): “Spreading the Word: Geography, Policy, and Knowledge Spillovers,”

The Review of Economics and Statistics, 95, 884–903. [Cited on page 3.]

BENSON, C. L. AND C. L. MAGEE (2015): “Quantitative determination of technological improvement from patent

data,” PloS one, 10, e0121635. [Cited on page 79.]

BERGEAUD, A., G. CETTE, AND R. LECAT (2016): “Productivity trends in advanced countries between 1890 and 2012,”

Review of Income and Wealth, 62, 420–444. [Cited on pages 63 and 105.]

BERGEAUD, A., A. GUILLOUZOUIC, E. HENRY, AND C. MALGOUYRES (2022a): “From public labs to private firms:

magnitude and channels of R&D Spillovers,” . [Cited on page 3.]

BERGEAUD, A., C. VERLUISE, et al. (2022b): “A new Dataset to Study a Century of Innovation in Europe and in the

US,” Tech. rep., Centre for Economic Performance, LSE. [Cited on page 6.]

BESSEN, J. (2009): “NBER PDP project user documentation,” Data available at: https://sites. google.

com/site/patentdataproject/Home/downloads. [Cited on page 76.]

BLOOM, N., C. I. JONES, J. VAN REENEN, AND M. WEBB (2020): “Are ideas getting harder to find?” American Economic

Review, 110, 1104–1144. [Cited on pages 16 and 52.]

BLOOM, N., M. SCHANKERMAN, AND J. VAN REENEN (2013): “Identifying technology spillovers and product market

rivalry,” Econometrica, 81, 1347–1393. [Cited on pages 3, 5, 16, and 17.]

BORUSYAK, K., P. HULL, AND X. JARAVEL (2022): “Quasi-experimental shift-share research designs,” The Review of

Economic Studies, 89, 181–213. [Cited on pages 2 and 22.]

BRUNT, L., J. LERNER, AND T. NICHOLAS (2012): “Inducement Prizes and Innovation,” The Journal of Industrial Eco-

nomics, 60, 657–696. [Cited on page 14.]

BUERA, F. J. AND R. E. LUCAS (2018): “Idea flows and economic growth,” Annual Review of Economics, 10, 315–345.

[Cited on page 4.]

BUSH, V. (1945): “Science: the endless frontier, a report to the President, US Government Printing Office,” Tech. rep.,

Washington, DC. [Cited on pages 44 and 89.]

CHEN, Z. (2022): “Economic Growth and the Rise of Large Firms,” . [Cited on page 105.]
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DYÈVRE, A. AND O. SEAGER (forthcoming): “Matching Patents to Publicly Listed Firms in the US: 1950-2020,” Tech.

rep., LSE Working paper. [Cited on pages 5, 6, 7, and 74.]

FARRE-MENSA, J., D. HEGDE, AND A. LJUNGQVIST (2020): “What is a patent worth? Evidence from the US patent

“lottery”,” The Journal of Finance, 75, 639–682. [Cited on page 23.]

FEENSTRA, R. C. AND D. E. WEINSTEIN (2017): “Globalization, Markups, and US Welfare,” Journal of Political Economy,

125, 1040–1074. [Cited on page 33.]

FENG, J. AND X. JARAVEL (2020): “Crafting intellectual property rights: Implications for patent assertion entities,

litigation, and innovation,” American Economic Journal: Applied Economics, 12, 140–81. [Cited on pages 2 and 23.]

FIELDHOUSE, A. AND K. MERTENS (2023): “The Returns to Government R&D: Evidence from US Appropriations

Shocks,” . [Cited on pages 4, 5, 21, 28, 31, 91, 92, and 93.]

FLEMING, L., H. GREENE, G. LI, M. MARX, AND D. YAO (2019): “Government-funded research increasingly fuels

innovation,” Science, 364, 1139–1141. [Cited on pages 6, 7, 74, and 77.]

FURMAN, J. (2015): “Business investment in the united states: Facts, explanations, puzzles, and policies,” Reviving

Private Investment” Remarks at the Progressive Policy Institute Washington, DC. [Cited on page 33.]

GABAIX, X. (2009): “Power laws in economics and finance,” Annu. Rev. Econ., 1, 255–294. [Cited on page 46.]

GAULE, P. (2018): “Patents and the success of venture-capital backed startups: Using examiner assignment to estimate

causal effects,” The Journal of Industrial Economics, 66, 350–376. [Cited on page 2.]

GODIN, B. (2006): “The Linear Model of Innovation: The Historical Construction of an Analytical Framework,” Science,

Technology, & Human Values, 31, 639–667. [Cited on page 89.]

GRAHAM, S. J., A. C. MARCO, AND R. MILLER (2018): “The USPTO patent examination research dataset: A window

on patent processing,” Journal of Economics & Management Strategy, 27, 554–578. [Cited on page 78.]

GRILICHES, Z. (1979): “Issues in assessing the contribution of research and development to productivity growth,” The

bell journal of economics, 92–116. [Cited on page 15.]

——— (1992): “The Search for R&D Spillovers,” The Scandinavian Journal of Economics, 94, S29–S47. [Cited on page 3.]

GROSS, D. P. AND B. N. SAMPAT (2024): “The Government Patent Register: A New Resource for Measuring US

Government-Funded Patenting,” Tech. rep., National Bureau of Economic Research. [Cited on page 7.]

GRUBER, J. AND S. JOHNSON (2019): Jump-starting America: How breakthrough science can revive economic growth and the

American dream, Hachette UK. [Cited on page 4.]

GUENTHER, G. (2022): “Federal Research Tax Credit: Current Law and Policy Issues,” . [Cited on page 67.]
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Review, 104, 3222–55. [Cited on page 3.]

59



MOWERY, D. C., R. R. NELSON, B. N. SAMPAT, AND A. A. ZIEDONIS (2015): Ivory tower and industrial innovation:

University-industry technology transfer before and after the Bayh-Dole Act, Stanford University Press. [Cited on page 17.]

MURPHY, P., D. BLACKABY, N. O’LEARY, AND A. STANEVA (2020): “Understanding What Has Been Happening to the

Public-Sector Pay Premium in Great Britain: A Distributional Approach Based on the Labour Force Survey,” British

Journal of Industrial Relations, 58, 273–300. [Cited on pages 48 and 51.]

MYERS, K. R. AND L. LANAHAN (2022): “Estimating Spillovers from Publicly Funded R&D: Evidence from the US

Department of Energy,” American Economic Review, 112, 2393–2423. [Cited on pages 3 and 43.]

NARIN, F. (1995): “Patents as indicators for the evaluation of industrial research output,” Scientometrics, 34, 489–496.

[Cited on page 79.]

NATIONAL SCIENCE BOARD, N. (1975): Science Indicators, 1974: Report of the National Science Board, US Government

Printing Office. [Cited on page 17.]

NELSON, R. R. (1959): “The simple economics of basic scientific research,” Journal of political economy, 67, 297–306. [Cited

on page 89.]

NSF NATIONAL SCIENCE BOARD (2022): “Research and Development: U.S. Trends and International Comparisons,”

Science and Engineering Indicators NSB-2022-5, National Science Foundation, Alexandria, VA. [Cited on page 66.]

OECD (2021): “R&D Tax Incentives: United States, 2021,” . [Cited on pages 65 and 66.]

OLLEY, G. S. AND A. PAKES (1996): “The Dynamics of Productivity in the Telecommunications Equipment Industry,”

Econometrica, 64, 1263–1297. [Cited on pages 28 and 36.]

OLMSTEAD-RUMSEY, J. (2022): “Market Concentration and the Productivity Slowdown,” Working paper. [Cited on

pages 4 and 33.]

RAO, N. (2016): “Do tax credits stimulate R&D spending? The effect of the R&D tax credit in its first decade,” Journal

of Public Economics, 140, 1–12. [Cited on page 67.]

RESCHKE, B. P., P. AZOULAY, AND T. E. STUART (2018): “Status spillovers: The effect of status-conferring prizes on the

allocation of attention,” Administrative Science Quarterly, 63, 819–847. [Cited on page 14.]

ROACH, M. AND W. M. COHEN (2013): “Lens or prism? Patent citations as a measure of knowledge flows from public

research,” Management Science, 59, 504–525. [Cited on page 9.]

ROMER, P. M. (1990): “Endogenous technological change,” Journal of political Economy, 98, S71–S102. [Cited on page 4.]

SAMPAT, B. AND H. L. WILLIAMS (2019): “How do patents affect follow-on innovation? Evidence from the human

genome,” American Economic Review, 109, 203–36. [Cited on pages 2 and 23.]

SPITALNIC, P., S. HEFFLER, B. DICKENSHEETS, AND M. KNIGHT (2016): “Hospital multifactor productivity: An up-

dated presentation of two methodologies,” Office of the Actuary, Centers for Medicare & Medicaid Services, US Depart-

ment of Health and Human Services. [Cited on page 19.]

TRAJTENBERG, M., R. HENDERSON, AND A. JAFFE (1997): “University versus corporate patents: A window on the

basicness of invention,” Economics of Innovation and new technology, 5, 19–50. [Cited on pages 4 and 13.]

WILLIAMS, H. (2012): “Innovation Inducement Prizes: Connecting Research to Policy,” Journal of Policy Analysis and

Management, 31, 752–776. [Cited on page 14.]

WILSON, D. J. (2009): “Beggar thy neighbor? The in-state, out-of-state, and aggregate effects of R&D tax credits,” The

Review of Economics and Statistics, 91, 431–436. [Cited on page 67.]

WILSON, D. J. et al. (2005): “The rise and spread of state R&D tax credits,” FRBSF Economic Letter. [Cited on page 66.]

60



Appendix

TABLE OF CONTENTS

Appendix A. Historical trends in R&D funding 63

A.1. Productivity growth and the funding of R&D in the United States 63

A.2. Breakdown of public R&D funding over the past 70 years in the US 63

A.3. Public R&D funding: the US and the rest of the world 64

A.4. The (un)importance of R&D tax credits 65

A.5. R&D budgets of US federal agencies 69

A.6. Breakdown of public and private R&D 72

A.7. Public R&D trends in other countries 73

Appendix B. Data appendix 74

B.1. Other datasets of patents matched to firms 74

B.2. Algorithm to match patents to Compustat firms 74

B.3. Detailed data description 77

B.4. Using patents to measure innovation and spillovers 78

B.5. Shares of proximity in technology space over time 80

Appendix C. Additional results on public & private R&D patents 81

C.1. Historical USPC classes 81

C.2. All results - publicly-funded vs. privately-funded patents 81

C.3. Some case studies 86

Appendix D. A discussion of the linear model of innovation 89

Appendix E. Historical SSIV – Additional results 90

E.1. Summary statistics 90

E.2. 10-year outcomes 91

E.3. Narrative shocks 91

Appendix F. Patent examiner regressions – additional results 92

F.1. Sample of firms: Summary statistics 92

Appendix G. Proofs and derivations 94

G.1. Summary of the notation used in the model 94

G.2. Key model equations 96

G.3. Proof of lemma 1 97

G.4. A useful lemma regarding the law of motion of profits 99

G.5. Proof of lemma 3 100

G.6. Proof of proposition 1 100
61



G.7. Proof of lemma 2 102

G.8. Proof of proposition 2 103

Appendix H. Calibration 105

H.1. Data 105

62



APPENDIX A. HISTORICAL TRENDS IN R&D FUNDING

A.1. Productivity growth and the funding of R&D in the United States. The debate about the

importance of public R&D spillovers is made more relevant by the fact that, in modern growth the-

ory, spillovers play a critical role in driving productivity growth. Understanding how spillovers

from private R&D differ from those of public R&D is therefore essential to assess the consequences

of the secular decline in US public R&D as a share of GDP over the past 60 years (shown in Fig-

ure 8, left panel).50 If public and private R&D differ in their ability to generate spillovers, then

this large compositional shift in R&D should have important consequences for innovation and

productivity growth.51
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FIGURE 8. R&D funding and TFP growth in the US

Notes: Series on R&D expenditures come from the Bureau of Economic Analysis (pre-1953) and from the National
Center for Science and Engineering Statistics, a National Science Foundation body (post-1953). Appendix A.2
breaks down federal R&D by departments and agencies. The aggregate TFP growth series comes from Bergeaud
et al. (2016): each bar in the left panel is the geometric average of the aggregate TFP growth rate taken over five-
year bins.

A.2. Breakdown of public R&D funding over the past 70 years in the US. Figure 9 shows the

breakdown of federal R&D expenditures as a share of US GDP, across agencies. The left panel

shows all agencies and the right panel focuses on the those with the smallest R&D expenditures.

50In 1960, federal R&D–which accounts for nearly all public R&D in the US–accounted for 1.7% of GDP. In
contrast, it was just .7% in 2020. Over the same period, the GDP share of private R&D tripled from .8 to
2.4%. While federal R&D has declined as a share of US GDP, its amount has steadily risen: it went from $78
billion in 1960 to $148 billion in 2020, both expressed in 2020 dollars.
51Over the same period, aggregate Total Factor Productivity (TFP) growth decelerated from a high of 2.1%
per year in the early 1960s to .9% in the late 2010s as can be seen in the right panel of Figure 8.
Many other countries have experienced similar declines in public R&D over the last 40 years. See Figure 11
in the Appendix.
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FIGURE 9. Federal R&D expenditures, by department and agency

Notes: Time series come from the database of historical trends in federal R&D assembled by the American Asso-
ciation for the Advancement of Science. The agency funding the R&D is not necessarily performing the R&D.

A.3. Public R&D funding: the US and the rest of the world. The US government is not alone in

investing in public R&D, and international spillovers from other countries may affect American

firms’ performance (Liu and Ma, 2023). However, the US appears to be the most important player

when it comes to public R&D. The OECD provides data on government-funded R&D over the last

40 years: it shows that the US public R&D budget has been as large as the sum of all other OECD

countries’ public R&D budgets, from 1981 to 2022.52

Furthermore, the American economy relies relatively little on spillovers from other countries.

In a recent working paper exploring cross-industry spillovers, Liu and Ma (2023) document that

countries are heterogeneous in their degree of reliance on domestically produced knowledge. The

US and Japan exhibit large shares of patent citations to domestically produced patents (around

70% for both countries) while countries like France and the United Kingdom have a majority

of their patent citations directed toward international patents. Taking these citation patterns as

indicators of knowledge spillovers, the authors conclude that the US is a large net exporter of

knowledge to other countries.

Lastly, knowledge spillovers are usually very localized and do not travel far. A voluminous

literature about knowledge spillovers started by Jaffe and Trajtenberg (1999) has documented that

52The other countries in the data are Australia, Austria, Belgium, Canada, Chile, Colombia, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea,
Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak
Republic, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. Budgets are expressed
in 2015 dollars. The data is from the ‘Gross domestic expenditure on R-D by sector of performance and
source of funds’ series.
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they decay very rapidly with distance. When measured by patent citations, most spillovers occur

in the immediate vicinity of where the knowledge was produced and do not travel much further

than the region around a city. This effect is particularly true for more advanced, less codified

knowledge.

These three facts lend support to the choice of this paper to focus on spillovers from US public

R&D only. Including international spillovers could be an interesting extension of the present work.

The most important reason why one would want to look into international spillovers is the recent

rise of China’s public R&D budget over the last 20 years. Indeed, the US budget was six times as

big as the Chinese one in 2003, the first year when OECD data is available, but it is only 1.2 times

as big in 2022.

A.4. The (un)importance of R&D tax credits. R&D tax credits are used in many countries to

incentivize private R&D spending. This section assesses if the federal and local R&D credits avail-

able to US firms are likely to have fueled the rise in private R&D. Because of the limited generosity

of the federal tax credit, its late introduction in 1981 and the unavailability of local state credits in

some state, I conclude that it is unlikely that R&D tax credits are behind the secular rise in private

R&D in the US.

Introduced in 1981 as part of the Economic Recovery Tax Act, the ‘Credit for Increasing Re-

search Activities’ is the tax relief scheme used by the federal government to foster private R&D in

the United States. It enables firms to claim a tax relief of up to 20% of R&D expenses (in excess

of a base amount), provided the expenses satisfy eligibility criteria. Qualified research expenses

include wages, material costs and rental cost of certain scientific property and equipment used in

research. The two main components of the scheme are the Regular Research Credit (RRC), typ-

ically used by larger firms with a history of R&D, and the Alternative Simplified Credit (ASC),

typically used by smaller and younger firms. In addition, firms can claim refunds on basic re-

search expenses and energy research expenses. If a company’s tax liability is insufficient to fully

utilize the credit, the unused portion can be carried forward for up to 20 years. Additionally, since

2016, eligible start-ups have the option to apply a portion of their research credit, up to $250,000,

against their payroll tax liability instead of their income tax liability. Wages paid to do in-house

R&D constitute the largest expense eligible for the credit.

R&D tax credits are unlikely to have fueled a significant proportion of the secular increase in

private R&D shown in figure 8a. Firstly, they have been introduced only in 1981, more than three

decades after the rise in private R&D has been first recorded. Secondly, the American federal tax

credit is not particularly generous compared to similar fiscal incentives in OECD countries (OECD,
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2021) and it accounts for a small share of total private R&D.53 To gauge the importance of federal

tax credits in aggregate private R&D, figure 10 plots the total amount of tax credits claimed by

businesses, as a share of GDP (data is only available from 1990 to 2013). In 2013, American corpo-

rations claimed only $11 billion in R&D tax credits. In contrast, total private R&D spending was

$297 billion that year. R&D credits can thus hardly explain the large increase in private R&D.
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FIGURE 10. R&D tax credits and R&D expenses

Notes: Series on R&D expenditures come from the Bureau of Economic Analysis (pre-1953) and from the Na-
tional Center for Science and Engineering Statistics, a National Science Foundation body (post-1953). Note that
R&D expenditures by firms with fewer than 5 employees (‘microbusinesses’) are not counted in the NSF surveys
on R&D spending before 2016. See NSF National Science Board (2022), footnote 5, p. 73. The inclusion of mi-
crobusiness R&D in total private R&D makes little difference: it accounted for only $4 to $5 billion in 2016 (out of
$375 billion, i.e. 1.3%), year of its inclusion.
Data on tax credits claims come from the IRS’s Statistics of Income – Corporation Research Credit webpage.

Federal tax credits are not the only fiscal incentives R&D-performing firms have access to; as

many as 36 states had their own R&D credit scheme in 2023. It is however unlikely that state

tax credit matter much for several reasons. The first is that state tax credit rate is typically lower

than the federal credit rate (from 1% to 20% according to Wilson et al. (2005)). Secondly, not all

states offer R&D tax credits and very few were offereing tax credits in the 1980, shortly after

53The OECD rates the US R&D tax credit as less generous than the average OECD R&D tax credit, with an
implied subsidy rate of 7% compared to 20% for the average OECD country (OECD, 2021). The implied
subsidy rate is calculated as 1 − Bindex where Bindex is the level of pre-tax profit a representative company
needs to make to break even on a marginal, unitary outlay on R&D. In other words, a Bindex of 100% means
that firms need to generate one dollar of profit to break even after one dollar of R&D expense. In 2021,
American firms needed to make $0.93 of profits to justify a marginal dollar of R&D. French and German
firms, on the other hand, only needed to make $0.60 and $0.80 of profits, respectively, because the taxes and
subsidies there are more advantageous for R&D performing firms.
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the introduction of the federal tax credit. Until 1984, only Maryland had a state tax credit. The

number of states with credit then gradually increased to reach 31 in 2005. Lastly, careful analysis

of the aggregate effects of state R&D tax credits by Wilson (2009) find that increases in private

R&D ascribed to state credits come almost entirely from drawing away R&D from other states,

such that changes in tax credits essentially leave aggregate R&D spending unchanged. Most state

schemes follow federal guidelines to determine what constitute a qualified research expense and

how generous the state credit should be. While no database of state tax credits exists, one may

look at California, the most R&D-intensive state in the United States, to evaluate how important

state tax credits are for total private R&D investment. California introduced its owned tax credit in

1987, six years after the federal one was enacted. It covers R&D activities performed in California

only and allows firm to reduce their tax liability by 15% to 24% of their R&D expenses. In 2014,

Californian firms claimed $1.5 billion in research credit (Melass et al., 2021). This represents 12%

of the $12.6 billion claimed in federal R&D credits that year (Guenther (2022), table 3, p. 16). To

put this number in perspective, private R&D in California accounts for one third of all private

R&D in the US in 2019.54 In other words, while Californian firms represent a third of all private

R&D, they claimed an amount equivalent to roughly one tenth of federal credits in state credits.

Given the unavailability of local R&D credits in some states, the delay in the introduction of local

credits compared to federal credits and the Californian experience with local credits, making the

assumption that local R&D credits are as important as federal tax credits is likely to yield an upper

bound on the total amount of tax credits claimed by US firms. If one makes this assumption, total

tax credits in 2013 amount to $22 billion (less than 5% of total R&D spending). Recent estimates

of the elasticity of own-R&D spending to R&D tax credit suggest that $1 in credit leads to a $2

increase in R&D (Rao, 2016; Agrawal et al., 2014; ?). Using this elasticity and our upper bound

estimate of $22 billion in tax credit, one can estimate the increase in private R&D due to state and

federal credits as being $44 billion in 2013, or 13% of all private R&D. Arguably not a large share,

even for an upper bound estimate. Furthermore, federal tax credits have remained flat through the

period for which data is available, while private R&D has grown monotonically, further reducing

the explanatory power of R&D credits as a driver of private R&D. For all these reasons, it seems

unlikely that R&D credits are a major force behind the rise in private R&D.

Another worry one might have is that R&D tax credits are incentivizing firms to re-classify

non-research expenses into research expenses. The existing set of papers quantifying the extent

of reallocation is small, but their message is fairly consensual: there seems to be little reallocation

of non-R&D expenses to R&D expenses following the introduction of tax credits. ? use the intro-

duction of a more advantageous tax regime in the UK aimed at increasing the innovation of small

54See this 2021 note by the State Science & Technology Institute (SSTI).
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enterprise to evaluate the impact of R&D tax credits. They find that treated firms did not experi-

ence a decrease in the quality (citations) of the average patent after the introduction of the policy.

This indirectly supports the idea that re-labeling of non-R&D expenses may not be severe. How-

ever, in an analysis of a Chinese R&D tax credits (China’s InnoCom program), Chen et al. (2021)

find that re-labeled expenses may account for a quarter of all of the change in R&D expenses. All

in all, the evidence on R&D expenses re-labeling, while not exhaustive, suggests that re-labeling

is a real, but not large margin of response of firms.
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A.5. R&D budgets of US federal agencies. Panels A.7, A.8 and A.9 show the raw R&D budgets

of the agencies I use in the construction of my SSIV instrument. Values are expressed in billions of

2020 dollars (deflated using the CPI from the Bureau of Labor Statistics).
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TABLE A.7. R&D budgets over time, federal agencies (1)
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A.7. Public R&D trends in other countries. Outside of the US several advanced countries have

also experienced a decline in public R&D as a share of GDP. The OECD provides data about

government spending on R&D for several countries. The panels of Figure 11 show public R&D

expenditures as a share of GDP for all countries for which data is available. Countries are classified

in three groups depending on the growth trajectory of their public R&D as a share of GDP.

China

Korea
Austria
Denmark

Luxembourg

Norway

Portugal
Switzerland

0

.5

1

1.5

1980 1990 2000 2010 2020

Public R&D expenditure (share of GDP)

(A) Increasing

Germany

Italy
Japan

Australia

Belgium
Canada

0

.5

1

1.5

1980 1990 2000 2010 2020

Public R&D expenditure (share of GDP)

(B) Stable

United States

United Kingdom

France

Israel
Netherlands

New Zealand

0

.5

1

1.5

1980 1990 2000 2010 2020

Public R&D expenditure (share of GDP)

(C) Decreasing

FIGURE 11. Historical public R&D trends in selected countries

Notes: Data come from the OECD, series ‘Gross domestic expenditure on R&D by sector of performance and
source of funds’. Available here.

73

https://stats.oecd.org/Index.aspx?DataSetCode=GERD_SOF


APPENDIX B. DATA APPENDIX

B.1. Other datasets of patents matched to firms. 55

There are two other main datasets of Compustat firms matched to patents: Arora et al. (2021b)

and Kogan et al. (2017). Arora et al. (2021b) match USPTO patents to Compustat firms from 1985

to 2015, carefully reassigning patents from one firm to another after M&As, name changes and

re-listings. Dyèvre and Seager (forthcoming) build on the work of Arora et al. (2021b), who them-

selves extend the matching efforts of Hall et al. (2001). We improve it in four ways. We first extend

it temporally by matching USPTO patents to Compustat firms from 1950 to 2020, thereby covering

the immediate postwar period which has experienced large swings in both federal budgets and

patent production by agencies like NASA and the Department of Defense. We then improve the

matching quality by manually reviewing matches between firm names in Compustat and assignee

names in the USPTO datasets. Third, we add dynamic re-assignment events in the pre-1980 pe-

riod. Finally, we add government interest tags to all patents.

We improve upon Kogan et al. (2017), which covers the period 1926-2022 in five ways: (i) by ex-

tending the coverage to 2020, (ii) by correcting many false positive matches in the original data

due to the reliance of Kogan et al. (2017) on automated string cleaning algorithms, (iii) by adding

government interest data, (iv) by using disambiguated patent data and most importantly, (v) by

re-assigning patents after corporate events. While our dataset covers only three fourth of the pe-

riod covered by KPSS’s data, we are encompassing as many patents and a larger number of firms.

Table B.11 summarizes the strengths of each dataset, including ours. The large coverage of firms

over the 1950-2020 period and the dynamic nature of patent stocks make the DS dataset uniquely

suited for the analyses performed in this paper.

B.2. Algorithm to match patents to Compustat firms. Due to the absence of firm identifiers that

can join Compustat and the USPTO data, one has to rely on name matching to link firms to patent

assignees. Our name matching algorithm, described in more details in Dyèvre and Seager (forth-

coming), proceeds in four steps, and produces two datasets. The first dataset is called the static

match. It assigns a firm in Compustat to each patent, at the time of filing. This dataset can be used

to infer the flow of patents produced by a firm in a given year. The second dataset is a dynamic

match. It provides associations between unique firm identifiers over ranges of years such that one

can observe the evolution of a firm’s patent stock over time.

To build this dataset, we combine data from nine sources: (i) patent data comes from PatentsView

for patents filed between 1976 and 2020, (ii) patent data from 1950 to 1975 comes from Fleming

et al. (2019), (iii) firm balance sheet data comes from Compustat North America, (iv) name changes

55In this section, ‘we’ refer to Arnaud Dyèvre and Oliver Seager, who have assembled the dataset used in
this paper for another project.
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Coverage Dynamic Firms Patents Disambiguated

DS 2023 1950-2020 ✓ 9,961 3.115m PatentsView +
Used in this paper unique GVKEYs Harmonization w/ FGLMY

+ Extensive manual checks

ABS 2021 1980-2015 ✓ 4,985 1.349m Extensive manual checks
unique PERMNOs

KPSS 2023 1926-2023 No 8,547 3.160m Some manual checks
unique PERMNOs

KPSS 2023 1950-2020 No 8,448 2.918m Some manual checks
Restricted to 1950-2020 unique PERMNOs

NBER 2001 1963-1999 No 2,487 0.835m Automatic
unique CUSIPs

TABLE B.11. Datasets of publicly-listed firms matched to patents

Notes: The numbers of patents and PERMNOs (unique firm identifier tied to a firm’s stock) available in ABS
2021 are obtained from the patent 1980 2015.dta dataset from the authors (available here). The numbers for
KPSS come from their Match patent permco permno 2022.csv dataset (available here). The numbers for
the NBER dataset come from the authors’ apat63 99.dta dataset (available here).

and M&A data comes from the Center for Research and Security Prices (CRSP), (v) post-1985 cor-

porate restructuring information comes from SDC Platinum, (vi) some data on firm ownership

comes from Arora et al. (2021b), henceforth ABS, (vii) data from Wharton Research Data Services

complements this information on corporate structure (because subsidiaries are listed in SEC 10-K

filings), (viii) earlier data on corporate events comes from the list of acquisitions by publicly listed

firms, from 1952 to 1963, compiled by Lev and Mandelker (1972) and finally (ix) a manually cu-

rated list of M&As, re-listings and spinoffs complements SDC Platinum (which starts in 1985) and

Lev and Mandelker (1972) (which covers 1952-1963). With these datasets at hand, our merging

effort proceeds in four steps. Our code is available in the project repository.

B.2.1. Name cleaning. Even within our two patent datasets, the same patent assignee may appear

under different names because there are no unified reporting requirements. For instance, the tech-

nology firm IBM appears under ‘I.B.M’, ‘IBM’, ‘International Business Machines’, ‘IBM Intellectual

property’ and many other names in the patent data. Furthermore, the FGLMY dataset contains

a substantial amount of inaccurate firm names due to the authors’ reliance on Optical Charac-

ter Recognition (OCR) techniques to extract text from the patents PDFs. OCR is the only viable

method to get patent information pre-1976, but further cleaning is required for this dataset. For

instance, the machine-read text of a patent assignee field is ‘Assignors to Reliance Electric and
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Engineering of Ohio Application March 22 1947 Serial No. 736532’ instead of ‘Reliance Electric

and Engineering’. We clean these firm names as best as we can before running the general name-

cleaning algorithm on the combined patent datasets. To create a unique firm name for each rel-

evant assignee, we homogenize names by removing leading and trailing white spaces, replacing

non-standard characters such as ‘é’ or ‘å’ by standard ones, condensing acronyms such as ‘Limited

Liability Company’ into ‘LLC’, replacing the names of large companies by a common name using

a substring match (e.g. ‘IBM’ in ‘IBM Intellectual Property’) and finally removing all white spaces.

As a result, 98.9% of all firm names in the patent datasets and 99.7% in the balance-sheet data are

altered.

B.2.2. Harmonization of firm names across patent datasets. Even after cleaning firm names, we may

still have discrepancies between the PatentsView and the FGLMY parts of the patent data. For

instance, a firm may be reported as ‘ABC Technologies’ in FGLMY and ‘ABC’ in Compustat. In

such cases, we leverage the joint coverage of both datasets from 1976 to 2017 and assign a new

common name to assignees from PatentsView and FGLMY with significant overlap in patents.

All assignees with significant overlap are subject to a careful manual review before being given a

joint clean name. For the 250 firm names associated with the most patents, we also conduct online

searches to find alternative names associated with the firm.

At the end of these three steps, we have 8,651,808 patents associated with 633,530 standardized

firm names, from 1926 to 2020. We then proceed to match the assignee names to Compustat firm

names

B.2.3. Obtaining all the names under which a company trades. A firm who files a patent under one

name in a given year may not trade under the same name in another. Furthermore, patents filed

by subsidiaries of a bigger firms need to be counted in the patent stock of the larger firm. The

fourth step in our merging procedure consist in identifying all the names associated with each

GVKEY-year pairs in Compustat. Following the methodology of Arora et al. (2021b), we fetch

information on firm names from the CRSP Daily Stock file and CRSP-Compustat Linking Tables.

38% of all GVKEYs in our sample have at least two trading names over the 1950-2020 period.

We then follow Bessen (2009) in attributing a patent to the highest level in a corporate structure

by using subsidiary data from WRDS (which comes from SEC 10-K filings over the 1993-2019

period). We also rely on the work of ABS and Lev and Mandelker (1972) to get data on ownership

and acquisitions of private subsidiaries, respectively. Finally, we add corporate events coming

from a manually curated list covering the period from 1950 to 1980. All steps are subject to careful

manual checks on the names of firms and the validity of the corporate events we identified.

B.2.4. Dynamic match. To then assign a patent to all the GVKEYs it is linked to, we fetch data on

mergers, acquisitions, re-listings and spinoffs (henceforth ‘corporate events’) from four sources.
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First, SDC Platinum provides 414 corporate events, from 1985 to 2020. Then, the CRSP-to-Compustat

crosswalk provides an additional 570 corporate events over the whole period covered by Compu-

stat. Third, we manually search for corporate events when we observe several GVKEYs associated

with one standardized name. This step yields an additional 296 corporate events. Lastly, we re-

view several lists of high-value M&A activity to complete the list of corporate events from 1950

to 1989 (a period with little to no coverage by SDC Platinum). This last step adds 700 additional

corporate events.

B.3. Detailed data description.

Firms. I select companies headquartered in the US or Canada over 1950-2020. Nominal values are

deflated using the CPI from the Bureau of Labor Statistics.

Patents. Patensview considerably improves upon previous disambiguation efforts by using hi-

erarchical agglomerative clustering–a machine learning algorithm–to group differently spelled

assignees into relevant categories (Monath et al., 2021).56

Government interest. Both cases are identified separately. For direct assignees, I use the classifica-

tion of Patentsview and Fleming et al. (2019) of assignees as government entities.57 When neces-

sary, I aggregate assignees to the highest level using the hierarchical table of government entities

provided by PatensView58 so that patents assigned to agencies like DARPA are aggregated up to

the level of the Department of Defense for instance. This step ensures that the source of variation

of federal budget funding is at the same level as the variation in patent production.

Patent examiner scores. The American Inventors Protection Act (AIPA) of 1999 mandates the public

disclosure of most USPTO patent applications filed on or after November 29, 2000, regardless of

whether the patents are eventually granted. Such applications are published in the public record

56Previous disambiguation efforts typically rely on ‘edit-distance’ techniques that assign a percentage of
similarity between two strings based on how many characters need to be changed to transform one string
into the other. For instance, an edit-distance procedure would assign high similarity scores to long assignee
names with many characters in common such as ‘The United States of America as represented by the sec-
retary of the Navy’ and ‘The United States of America as represented by the secretary of the Army’. Such
conflations would be problematic when assigning patents to government agencies. Conversely, assignees
values ‘I.B.M.’ and ‘International Business Machines’ would not be paired. This type of false negative is the
main reason behind my improvement over (Kogan et al., 2017).
57It is common for government agencies to be assigned patents, even those producing innovations with a
strategic interest.
58Table g gov interest.tsv provided by PatentsView
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within 18 months of the filing date, with few exception such as applications which are national se-

curity classified or which are explicitly asked not to be published by the applicant.59 The 2021 ver-

sion of PatEx includes information on over 12.5 million non-provisional and provisional USPTO

patent applications that are publicly viewable, as well as more than 1 million Patent Cooperation

Treaty (PCT) applications. The data used for this version of PatEx was obtained by OCE from the

Patent Examination Data System (PEDS) in June 2022. Coverage of patent applications is most

reliable from December 2000 onward, when the AIPA enters in force: 83% of all post-AIPA appli-

cations are available in PatEx. Pre-AIPA coverage is only slightly less comprehensive, with three

quarters of applications available (Graham et al., 2018).

R&D Budgets. For agencies with no R&D budgets reported in these tables like the Department

for Veterans Affairs, I recover their historical budgets from The first is the White House’s website

where R&D spending by agencies over the 1962-2022 period is reported in statistical tables.60 The

second is the official 2013 federal budget documents by the Office of Management and Budget

which contained detailed accounts of expenditures by agencies from 1940 onward. I manually en-

ter these numbers and, when missing, estimate R&D spending by scaling agencies’ total budgets

by the share of R&D in the federal government’s total budget.

Other patent-related datasets. Dates of creation of technological fields come from data available

on the USPTO website about the years of introduction of new USPC classes,61 and patents disrup-

tiveness scores come from Kelly et al. (2021).62

B.4. Using patents to measure innovation and spillovers. Patent documents contain detailed

information about an innovation, its inventors, its assignees, and its technological content. The

main limitation to the use of patents to measure innovation is that not all innovations are patented,

either because the innovation does not meet one of the three main criteria for being protected by a

patent (usefulness, novelty and non-obviousness) or because the invention is better protected by

alternative means such as secrecy. However, there is a broad consensus that patent counts are a

good, if noisy, indicator of the innovativeness of an inventor, a firm, a city or a country.

59Applications that are not published 18 months after filing may be published 60 months after filing instead.
Although some US patent applications may choose to opt out of publication, according to Graham and
Hegde’s 2013 study, only around 8 percent of US applications have chosen to do so for pre-grant secrecy of
patent applications.
60www.whitehouse.gov/omb/budget/historical-tables/, table 9.8.
61Raw data stored at the following link arnauddyevre.com/files/USPC classes years established.pdf. Csv
file available at arnauddyevre.com/files/timeline detail classes.csv
62Data made available by the authors at dimitris-papanikolaou.github.io/website/
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Patent counts are typically strongly correlated with measures of inputs into the innovation pro-

cess such as R&D expenses or the number of researchers in a firm. There is also evidence that a

firm’s patent count is positively associated with many metrics of firm performance. For instance,

the patent yield of R&D expenses (measured as the ratio of patents to R&D expenditure) is posi-

tively associated with a firm’s Tobin q (Hall et al., 2005).

Moreover, citations are a good indicator of the economic value of a patent, a evidenced by the

positive association between the average citation count received by patents and the filing firm’s

Tobin’s q Hall et al. (2005). They are also good proxies for the technological value of patents

as: expert valuations of the merits of patents correlate positively with their citation counts (Albert

et al., 1991) and patents who are ‘Hall of Fame’ or identified by patent offices as being important are

highly cited (Narin, 1995). In contrast, patents expertly idenified as futile receive fewer citations

(Czarnitzki et al., 2011). Benson and Magee (2015) also show that the citation counts of patents

in some technological domains is positively associated with the rate of progress (the reduction in

costs for instance) in these domains. When studying the strategic decisions of firms of different

sizes to expose themselves to outward spillover, Crescenzi et al. (2022) find that the quantity of

citations to foreign firms in a region is a signal of spillovers that is correlated with other signals

such as inventor movements between firms and joint patenting.

See Jaffe and De Rassenfosse (2017) for a recent overview of best practices.
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B.5. Shares of proximity in technology space over time. The shares of proximity si f t and siat

used in my empirical exercises are time-varying but they appear to be extremely sticky in the

data. Figure 12 shows the correlation between shares of exposure to federal agencies in one five-

year period (on the x-axis) and shares of exposure in the next five-year period (y-axis). All shares

are very close to the 45 degree line. Shares in future periods are larger due to the increase in the

number of federal agencies over time.

45°

0
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.2

.3

.4

.5

0 .1 .2 .3 .4 .5
Shares at t

Shares at t + 5

FIGURE 12. Stability of shares of exposures to public R&D

Notes: The figure plots a binscatter of firm-to-agency exposure shares, from each 5-year period to the next. Each
dot represent approximately 170 firm × period observations. The plot uses 1,000 bins, defined at t, to facilitates
legibility. The correlation between shares over time is 0.61. The top 3 agencies with the highest average firm
exposures are the Department of Defense (firms exposed to the DoD have a 17.8% exposure on average), NASA
(13.7%), the Department of Agriculture and the Department of Energy (both at 10.8%).
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APPENDIX C. ADDITIONAL RESULTS ON PUBLIC & PRIVATE R&D

PATENTS

C.1. Historical USPC classes. Figure 13 shows the cumulative shares of USPC patent classes is

use over time. The blue time series uses the date of introduction of classes while the red one uses

the data of the first patent in the new classes. Because patents are ex post re-classified into the

most relevant patent class, the blue time series first order stochastically dominates the red one.

See Lafond and Kim (2019) for a detailed history of the USPTO classification system.

FIGURE 13. Timeline of the introduction of new USPC patent classes

C.2. All results - publicly-funded vs. privately-funded patents.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Share of citations directed to scientific papers N = 8, 216, 939
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TABLE C.12. Fact 1 – Publicly-funded patents are more fundamentals (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of inter-
est (yi) on a dummy equal to one if the innovation protected by the patent benefited from public funding. Formally: yi = α + β ×
1[patent i is publicly-funded] + Xiγ + εi. Standard errors are clustered at the class and year levels. Graphs in the first column show how
β varies when successively more exhaustive arrays of controls are used. Graphs in the second column report β coefficients for different years.
Graphs in the third column show how the β coefficient varies within performers of R&D: universities or firms. The last graphs report coefficient
heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Probability of opening a new technological class N = 8, 216, 965
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TABLE C.13. Fact 2 – Publicly-funded patents are more impactful (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of inter-
est (yi) on a dummy equal to one if the innovation protected by the patent benefited from public funding. Formally: yi = α + β ×
1[patent i is publicly-funded] + Xiγ + εi. Standard errors are clustered at the class and year levels. Graphs in the first column show how
β varies when successively more exhaustive arrays of controls are used. Graphs in the second column report β coefficients for different years.
Graphs in the third column show how the β coefficient varies within performers of R&D: universities or firms. The last graphs report coefficient
heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Kelly et al. (2021) measure of patent disruptiveness (rfsim010) N = 2, 557, 885
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TABLE C.14. Fact 2 (continued) – Publicly-funded patents are more impactful (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of inter-
est (yi) on a dummy equal to one if the innovation protected by the patent benefited from public funding. Formally: yi = α + β ×
1[patent i is publicly-funded] + Xiγ + εi. Standard errors are clustered at the class and year levels. Graphs in the first column show how
β varies when successively more exhaustive arrays of controls are used. Graphs in the second column report β coefficients for different years.
Graphs in the third column show how the β coefficient varies within performers of R&D: universities or firms. The last graphs report coefficient
heterogeneity across R&D funders.
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Adding controls Difference over time Performed by firms v. unis Heterogeneity by funder
Count of classes citing the focal patent N = 5, 223, 228
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Share of citations received from ‘small’ firms (< 500 employees) N = 5, 223, 228
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TABLE C.15. Fact 3 – Publicly-funded patents generate more spillovers, especially to small firms (all results)
Notes: The unit of analysis is a patent. Coefficients and 95% confidence intervals come from a regression of an outcome of inter-
est (yi) on a dummy equal to one if the innovation protected by the patent benefited from public funding. Formally: yi = α + β ×
1[patent i is publicly-funded] + Xiγ + εi. Standard errors are clustered at the class and year levels. Graphs in the first column show how
β varies when successively more exhaustive arrays of controls are used. Graphs in the second column report β coefficients for different years.
Graphs in the third column show how the β coefficient varies within performers of R&D: universities or firms. The last graphs report coefficient
heterogeneity across R&D funders.
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C.3. Some case studies. To fix ideas, and to better understand which publicly-funded patents do

well across the outcome variables used in section 3, it is informative to study a few patents in

more details. I present here three case studies of government-supported technologies. The first

case study describes the government-supported patent that relies most heavily on science in my

sample. The second is the one that is most ’ahead of its time’, and the last one is the government-

supported patent cited by the largest number of patent classes.

C.3.1. Case study 1 – An innovation in immunotherapy that relies on medical science. In my sample of

patents, patent number 5,833,975 is the one with the highest share of citations to scientific articles.

Only five of its citations are directed to previous patents and the remaining 492 are directed to

scientific papers (99% of the total).

FIGURE 14. A DNA sequence provided in patent
#5,833,975

The process protected by this

patent is one whereby medical re-

searchers can modify poxviruses in

order to use them as insertion and

expression vehicles for genes in a

host body. These genes are used in

immunization processes; they enable

the expression of an ‘antigenic pro-

tein’ that can induce an immunolog-

ical response in the host. An impor-

tant application of this technology is

the development of immunotherapy

for patients treated for cancers. Fig-

ure 14, taken from the patent, shows

one of several DNA sequences of

genes that can be expressed by the

modified poxviruses.

The original patent assignee is

a pharmaceutical firm, Virogenetics

Corp, that received financial support

from the US government. Unfortu-

nately, government funding for this

patent cannot be traced back to a specific agency: the statement of government interest is too

generic, as can be seen in Figure 15.
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FIGURE 15. Statement of government interest in
patent #5,833,975

Most of the citations to academic

work are to articles published in vi-

rology, molecular biology and im-

munology journals. It is worth not-

ing that pharmaceutical and medical

patents are heavily represented among patents with large shares of citations to scientific papers.

Out of the top 10 patents in shares of citations to science, eight of them are either supported by the

Department of Health and Human Services or are protecting health-related technologies. This re-

liance of medical patents on science can also be seen in the heterogeneity analysis in the top-right

corner of panel C.12.

C.3.2. Case study 2 – A random number generator before the computer era. Patent number 4,183,088,

entitled ‘Random number generator’, is the publicly-funded patent that predates the creation of

its patent class by the longest time in my sample.63 It was filed in 1962 by the US Navy, 37 years be-

fore being re-classified into the ’Electrical computers: arithmetic processing and calculating’ USPC

class upon its introduction, in 1999.

FIGURE 16. Drawing of the random number genera-
tor device of patent #4,183,088

Originally, it was filed under the ’Os-

cillators’ patent class in the USPC

system (class number: 331). Its sub-

class was ’Electrical noise or random

wave generator’ (78). The technol-

ogy described in the patent indeed

relies on a noise signal fed into a de-

vice that then combines it with an-

other signal supplied by a pulse gen-

erator. Through a sequence of me-

chanical and electrical transforma-

tions of the two signals, the device

provides a random sequence of ones

and zeroes with a specific probability

distribution to its user.

This patent predates the computer era by several decades. The first mention of the word ’Com-

puter’ in a USPC patent class title was in 1993 in the ’Computer graphics processing and selective

visual display systems’ class.

63The sample of patents is restricted to patents filed after 1950 and to patents that are filed before their latest
class is created (i.e. patents that are ’ahead of their time’) here.
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C.3.3. Case study 3 – A shape-memory alloy with applications across many technologies. The publicly-

funded patent cited across the largest number of patent classes is patent number 5,061,914, entitled

’Shape-memory alloy micro-actuator’. It was funded by NASA but the R&D was performed by a

private firm. The patent was filed in 1989 and is cited by 36 distinct patent classes.

FIGURE 17. Statement of government interest in
patent #5,061,914

The technology described in this

patent is a type of micron-sized

mechanical switch. Such minus-

cule switches are made of metal al-

loys that change shape or size when

heated. They return to their original

state when the temperature drops

back down. This innovation is use-

ful for creating surfaces that alternate

in shape, and applications of shape-

memory micro-actuator are multi-

ple. In medicine, they are used to

navigate through winding paths in

the body; they change shape during

surgeries. In the aerospace and automotive industries, these actuators are used to adjust com-

ponents like air vents or flaps without relying on complicated mechanical systems. In consumer

electronics, they can be used to protect some critical components if the device heats up above a

certain temperature. NASA also uses larger scale actuators to adjust the flight performance of

aircrafts and space shuttles under changing temperature conditions (NASA technology transfer

program website, accessed November 24, 2023).
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APPENDIX D. A DISCUSSION OF THE LINEAR MODEL OF INNOVATION

The interpretation of the science-technology nexus presented in section 3 is often described as

the linear model of innovation (Bush, 1945; Maclaurin, 1953; Nelson, 1959). It posits that intellectual

progress goes from science to applied research, to development, to commercialization and to dif-

fusion. In spite of its simplicity, the linear model has been shown to be a powerful tool to explain

the interaction between fundamental research and applied innovation (Godin, 2006; Balconi et al.,

2010; Ahmadpoor and Jones, 2017), and most modern research takes the upstreamness of basic

research vis-à-vis applied innovation as given (Akcigit et al., 2020; Arora et al., 2021a).
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APPENDIX E. HISTORICAL SSIV – ADDITIONAL RESULTS

E.1. Summary statistics. Table E.16 shows summary statistics on the sample of firms used in the

SSIV specifications.

Variable Mean SD Min p10 p25 p50 p75 p90 Max

Monetary values – million of 2020 USD
Sales 7,844 25,028 1 71 313 1,273 5,235 16,067 498,518
Capital 4,428 16,692 0 15 70 352 2,220 9,257 375,924
Market value 8,226 27,492 0 41 170 962 4,385 16,300 702,025
R&D expenses 185 831 0 0 0 4 49 251 14,245

Counts
Employment (’000s) 23 66 0.003 0.3 1 5 18 51 2,100
Patent count at t (flow) 47 202 0 0 0 3 19 80 4,437

Endogenous treatments and instruments
Public spillovers 4.391 0.782 0.000 3.702 3.998 4.339 4.708 5.238 7.971
Public R&D funding 7.018 1.438 0.000 5.133 6.653 7.284 7.787 8.364 11.210
Private spillovers 0.280 0.113 0.005 0.137 0.206 0.273 0.340 0.421 1.067

States (top 5) Periods (top 5)
CA 10.5 % 2005 12.9 %
NY 8.0 % 2010 11.9 %
TX 7.8 % 2000 10.9 %
OH 7.6 % 1990 9.4 %
IL 7.4 % 1995 9.3 %

Sectors (top 5)
367 – Electronic Components & Accessories 6.0 %
382 – Lab Apparatus & Analytical, Optical, Measuring, & Controlling Instruments 4.6 %
384 – Surgical, Medical, & Dental Instruments and Supplies 4.4 %
371 – Motor Vehicles and Motor Vehicle Equipment 3.9 %
357 – Computer & Office Equipment 3.1 %

TABLE E.16. Summary Statistics – SSIV sample

Notes: The unit of observation is a firm × year. Summary statistics are computed on the sample used in Table
1 for the SSIV regressions (N = 7, 631). Monetary values are deflated using the BLS Consumer Price Index and
expressed in 2020 USD.
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(1) (2) (3) (4)

Productivity
∆10 ln(TFP) .024* .027** .027** .024*

(.013) (.013) (.013) (.014)

Firm sales and employment
∆10 ln(sales) -.020* -.015 -.017 -.015

(.011) (.011) (.012) (.010)
∆10 ln(employment) -.026** -.021** -.023** -.02**

(.011) (.010) (.011) (.010)

First-stage F-stat (exp. robust) 97.34 97.40 98.14 108.14

Period FE ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓
Sectors FE (2-digit) ✓ ✓ ✓
Sectors FE (3-digit) ✓

Own R&D and patents ✓ ✓ ✓ ✓
Private R&D spillovers ✓ ✓ ✓
Lagged firm controls ✓ ✓

N 6,499 6,499 6,499 6,499

TABLE E.17. Historical SSIV regression results – 10-year outcomes

Notes: The unit of observation is a firm × period. Standard errors and F-stats are exposure-robust (Adão et al.,
2019): they are computed using the authors’ reg ss and ivreg ss commands.
***, **, and * indicate two-sided significance at the 1, 5 and 10% levels, respectively.

E.2. 10-year outcomes.

E.3. Narrative shocks. This section describes the funding shocks I use in my robustness SSIV re-

sult. The selection of shocks is based on the historical description of R&D funding appropriations

in the appendix of Fieldhouse and Mertens (2023) and my own reading of the histories of federal

agencies. Table E.18 and E.19 below describes the shocks included in the instrument used for this

robustness check, along with a justification for their inclusion.
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NSF

1950 USSR’s first atomic test in 1949 + Scientific and technological competition with
the USSR (ballistic missiles) + Sputnik (1957)

1955
1960

1980 Reagan’s expansion of NSF
1990 Human Genome Project + 21st Century Research Fund initiative + Anthrax

terrorist attacks of 2001
1995
2000

2010 Recovery Act

Department of Energy and Environmental Protection Agency

1950 Eisenhower’s ‘Atoms for Peace’ (advance domestic energy production,
re-purpose breakthrough in fusion obtained during WWII)

1955
1960

1970 Oil shock → more research into alternative sources of energy (motivated by
energy inflation and concerns over national security)1975

2005 07-08 oil price shock
2010 Budget Control Act of 2011 (debt ceiling crisis)

Department of Homeland Security

2000 9/112005

TABLE E.18. Shocks kept in the narrative approach (NSF, Department of
Energy + Environmental Protection Agency, Department of Homeland Se-
curity)

Notes: The table shows the set of funding shocks kept in the construction of the SSIV instrument used in the
‘narrative’ approach robustness check. Shocks are selected based on the historical description of R&D funding
across federal agencies in the appendix of Fieldhouse and Mertens (2023), and my own reading of the histories
of the agencies. The right column provides a justification for the inclusion of the shock in the narrative-SSIV
instrument. Justifications that are used for several consecutive five-year periods within agencies are give the
same color (light gray or white).

APPENDIX F. PATENT EXAMINER REGRESSIONS – ADDITIONAL RESULTS

F.1. Sample of firms: Summary statistics.
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Department of Defense

1940 WWII
1945 WWII drawdown

1950 Korean War (1950-1953)
1955

Vietnam war (1955-1975) and drawdown (post 1975)
1960
1965
1970
1975

1980

Reagan’s buildup + Russian invasion of Afghanistan + Cold War drawdown
1985
1990
1995
2000

9/11 + Iraq + Afghanistan2005
2010

NASA

1955 Creation of NASA
1960 Sputnik (1957) + Apollo space program

1965 Apollo space program drawdown
1970 Loss of interest in spaceflight by Congress after the moon landing

1985 George H.W. Bush’s push for NASA funding + MIR space station1990
2010 Budget Control Act of 2011 (debt ceiling crisis)

Department of Health and Human Services

1970 Nixon’s ‘war on cancer’
1985 Reagan’s push for funding during the AIDS/HIV epidemic

1990 Human Genome Project + 21st Century Research Fund initiative + Anthrax
terrorist attacks of 2001

1995
2000
2005 Recovery Act of 2009 + Budget Control Act of 2011 (debt ceiling crisis)2010

TABLE E.19. Shocks kept in the narrative approach (DoD, NASA, Depart-
ment of HHS)

Notes: The table shows the set of funding shocks kept in the construction of the SSIV instrument used in the
‘narrative’ approach robustness check. Shocks are selected based on the historical description of R&D funding
across federal agencies in the appendix of Fieldhouse and Mertens (2023), and my own reading of the histories
of the agencies. The right column provides a justification for the inclusion of the shock in the narrative-SSIV
instrument. Justifications that are used for several consecutive five-year periods within agencies are give the
same color (light gray or white).
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Variable Mean SD Min p10 p25 p50 p75 p90 Max

Monetary values – million of 2020 USD
Sales 7,009 24,259 0 32 166 976 4,039 14,795 498,518
Capital 4,072 14,726 0 5 35 254 1,877 8,940 294,387
Market value 9,113 30,348 0 28 148 924 4,425 18,157 702,025
R&D expenses 162 852 -0 0 0 0 19 142 13,045

Counts
Employment (’000s) 18 63 0 0 1 3 12 43 2,100
Patent count 33 201 0 0 0 0 3 30 4,437

Endogenous treatments and instruments
Private spillovers 0.137 0.164 0.000 0.000 0.000 0.000 0.299 0.356 0.722
Public spillovers 1.057 1.289 0.000 0.000 0.000 0.000 2.323 2.684 6.447
Private leniency 0.000 0.001 -0.013 -0.001 0.000 0.000 0.000 0.001 0.014
Public leniency -0.003 0.009 -0.162 -0.011 -0.005 0.000 0.000 0.000 0.082

States (top 5) Periods
CA 11.0 % 2005 34.3 %
TX 9.7 % 2010 33.3 %
NY 7.5 % 2015 32.4 %
OH 4.6 %
MA 4.5 %

Sectors (top 5)
737 – Computer Programming, Data Processing, & other Computer Services 6.7 %
367 – Electronic Components & Accessories 4.6 %
283 – Drugs 4.0 %
491 – Electric Services 3.8 %
384 – Surgical, Medical, & Dental Instruments and Supplies 3.6 %

TABLE F.20. Summary Statistics – Patent examiner IV sample

Notes: The unit of observation is a firm × year. Summary statistics are computed on the sample used in Table 4
for the patent examiner IV regressions (N = 2, 118). Monetary values are deflated using the BLS Consumer Price
Index and expressed in 2020 USD.

APPENDIX G. PROOFS AND DERIVATIONS

G.1. Summary of the notation used in the model. Table G.22 summarizes the notation used in

the theory section.
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(1) (2) (3)

Application is publicly-funded 0.0001 0.0004 0.0005
(0.0010) (0.0009) (0.0009)

Art unit FE ✓ ✓ ✓
Art unit × year FE ✓ ✓
Patent count of applicant in current year ✓

Mean dep. var. 0.73 0.73 0.73
R2 0.552 0.620 0.6120
N 681,023 681,023 681,023

TABLE F.21. Are government applicants favored by USPTO examiners?

Notes: The unit of observation is a patent application × year. The table shows the results of a regression of
examiner leniency on a dummy variable equal to 1 if the application is funded by public R&D. The years in the
sample are those used in the patent examiner regressions i.e. 2001, 2005 and 2010. ***, **, and * indicate two-sided
significance at the 1, 5 and 10% levels, respectively.

Coefficient Cumulative share of applications

Agencies

Firms

0

.2

.4

.6

.8

1

-4

-2

0

2

4

0 5 10 15 20
Number of applications

FIGURE 18. Diminishing strength of the first stage for large entities
Notes: The graph shows how the strength of the relationship between the growth of patents of a firm and the
patent examiner instrument (changes in average leniency) evolves as entities submit more and more applications.
The unit of analysis is an entity (firm or agency) j in a five-year period t. The orange line and shaded area show
the coefficients and 95% confidence intervals coming from a regression of ∆pjt on ∆ljt. This is the variation
underlying the patent examiner IV strategy. In my regressions reported in the main text, ∆pjt and ∆ljt are then
aggregated across receiving firms (indexed by i in the main text). The solid and dashed lines show the cumulative
distributions of entities × year across their numbers of applications, for firms and public entities respectively. The
distribution of agencies first-order stochastically dominates that of firms because firms tend to file fewer patents
than agencies.
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(A) Average examiner leniency faced by firms

0
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(B) Average examiner leniency faced by agencies
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(C) 5-year difference in firm leniency
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(D) 5-year difference in agency leniency

FIGURE 19. Histograms describing the patent examiner variation

Notes: The histograms show the distributions of average leniencies faced by firms and agencies (panels 19a and
19a respectively) and the 5-year differences in average leniencies faced by firms and agencies (panels 19c and 19c
respectively). By construction, the average leniency is centered around 0; it is the firm- or agency-level average
of residuals of a regression of an examiner leniency on art unit fixed effects.

G.2. Key model equations.
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Government
τ Tax rate on firms’ profits

Production
w Production wage rate
α Drift of firms’ productivity
ν SD of firms’ productivity
σ SD of firms’ normalized profits
g Growth rate of the aggregate economy
e Private research effort
ϕ0 Returns to (applied) R&D effort
ρ Discount rate of firm owners
ζ Pareto tail exponent
ξ Power law inequality (ξ = 1/ζ)
A Aggregate productivity index
δ Endogenous exit rate (’creative destruction’)
δ Exogenous (baseline) exit rate

Innovation and spillovers
βg and βi Indicators of the type of research funded by the government and firms
ε Elasticity of productivity to applied spillovers
γ Elasticity of productivity to basic spillovers
Γ Innovation step size
Ψ Aggregate growth component
wg Research wage, publicly-funded researchers
wp Research wage, privately-funded researchers
Λ Private=public wage premium
λ Arrival rate of ideas
χ Share of ideas from spillovers successfully turned into businesses

Households
Lt Population at t
θ Substitution parameter of intermediate varieties (elasticity of subs. = 1/(1 − θ))

TABLE G.22. Notation used in the model

G.3. Proof of lemma 1.

Proof. Labor demand and intermediate output The final sector’s problem is:

max
yi

(∫ 1

0
yθ

i di
) 1

θ

−
∫ 1

0
piyidi ∀i ∈ [0, 1] (24)

First order conditions with respect to yi give θyθ−1
i

1
θ

(∫ 1
0 yθ

i di
) 1

θ −1
− pi = 0 and the inverse

demand for yi is thus:
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Description Equation

Optimization
Intermediate output choice yi = Y (ai/A)

1
1−θ

Labor choice li =
(
aθ

i /A
) 1

1−θ Y/Ψ

Research effort e = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ0
Choices of type of research βg = 1 and βi = 0 ∀i
Law of motion of productivity dait/ait = eϕ0dt + νdBt

Resource constraint
Allocation of research personnel Rg =

R
e/Λτ + 1

and Rp =
R

Λτ/e + 1

Aggregation and equilibrium objects
Labour market clearing condition L :=

∫ 1
0 lidi

Definition of aggregate output Y :=
(∫ 1

0 yθ
i di
) 1

θ

Effect of spillovers on the economy
Definition of spillovers ṅt := ln(λRg)γ(λRp)ϵ

Definition of creative destruction δ := χṅt

TABLE G.23. Key model equations
Notes: The endogenous variables of interest are Y, yi, ai, L, li, e, Rp, Rg, ṅ, δ, βg, βi. Time subscripts are omitted
when it does not cause confusion.

pi =

(
Y
yi

)1−θ

(25)

Plugging (25) into the objective function of monopolist i, replacing li by yi/zi and taking first

order conditions with respect to yi, I obtain the profit-maximizing output level for a firm with

productivity zi:

y∗i = Y
(

θ

w

) 1
1−θ

z
1

1−θ

i (26)

and because y∗i = zil∗i , labor demand is:

l∗i = Y
(

θ

w

) 1
1−θ

z
θ

1−θ

i (27)

Equilibrium wage w and aggregate output Y. The equilibrium wage w is obtained by plugging

(26) into the definition of final output (9), which gives:

w = θAΨ (28)
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where A =

(∫ 1

0
a

θ
1−θ

i di
) 1−θ

θ

is the (idiosyncratic) productivity index of the economy.64 The

value of Y in (26) and (27) can be obtained by plugging the expression for l∗i (27) into the labor

market clearing condition
∫ 1

0
lidi = L and using the expression for the wage rate (28). I obtain the

following expression for the equilibrium value of aggregate output:

Y = LAΨ (29)

This proves part 3 of lemma 1. Then, using (28), intermediate output and labor demand can be

written more simply as:

y∗i = Y
( ai

A

) 1
1−θ

and l∗i =
Y
Ψ

(
aθ

i
A

) 1
1−θ

Which proves part 1 of lemma 1.

Firm profits π∗
i and wage bill wl∗i . Firm profits are, by definition,

π∗
i = piy∗i − wl∗i (30)

and their value as a function of real variables is given by replacing pi by (25), l∗i by (27) and w

by its equilibrium value (28). Then, replacing yi by (26) and
θ

w
by

1
AΨ

(from (28)) gives a simple

expression of profits, which are equal to a 1 − θ share of revenues:

π∗
i = Y

( ai

A

) θ
1−θ

(1 − θ) (31)

Conversely, the wage bill of firm i is a θ share of its revenues. Its expression is obtained by

plugging the equilibrium value of l∗i in (27) into wl∗i and then replacing w by its expression given

by equation (28)

wl∗i = Y
( ai

A

) θ
1−θ

θ (32)

This proves part 2 of lemma 1 and thus completes the proof. □

G.4. A useful lemma regarding the law of motion of profits.

64The productivity index of the economy is the power mean of firms’ idiosyncratic productivities, where
the power θ

1−θ increases in the substitutability of varieties. By properties of power means, A is increasing
in subsitutability: the intuition is that when substitution between varieties becomes easier, the final good
producer buys more from the highest-productivity firm (exclusively from it when θ = 1 i.e. in the case
where varieties are perfect substitutes).
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Lemma 3 (Law of motion of profits). On a balanced growth path, if productivity evolves as (11), then

profits evolve as
dπit

πit
= µ(eit, βit)dt + σdBt (33)

with drift µ(eit, βit) :=
θ

1 − θ
(α(eit, βit) + gΨ) and standard deviation rate σ :=

θ

1 − θ
ν

G.5. Proof of lemma 3.

Proof. From lemma 1, I know that profits are π∗
it = Yt

(
ait

At

) θ
1−θ

(1 − θ). Taking logs and time

derivatives, I get that the long-run growth rate of a firm’s profits is equal to

gπ = gY +
θ

1 − θ
ga

where gx stands for the instantaneous growth rate of variable x. At is constant because, on a BGP,

the distribution of idiosyncratic firm productivities is stationary. Therefore, At does not contribute

to the growth of profits.

To find the value of gY, I rely on the expression of Yt provided by lemma 1 which has shown

that Yt = Lt AtΨt, so gY = gΨ on a BGP where there is no population growth.

A firm’s idiosyncratic productivity drift is given by ga = α(eit, βit). Therefore,

gπ = gΨ +
θ

1 − θ
α(eit, βit)

Turning to the standard deviation of normalized profits, I note that its value depends on the

only stochastic term in the expression of πit: ait. Noting that, on a BGP, ait = ai,0eα(e,β)t+νBt , I get

that a
θ

1−θ

it =
(

ai,0eα(e,S)t+νBt

) θ
1−θ

. Therefore the standard deviation rate of a
θ

1−θ

it is
θ

1 − θ
ν. Conse-

quently,
θ

1 − θ
ν is the standard deviation rate of profits.

□

G.6. Proof of proposition 1. The proof of this proposition proceeds in four steps. I start by show-

ing that the government invests exclusively in basic R&D because this maximizes the arrival rate

of breakthrough innovations. Then turning to firms, I provide a closed-form expression of the

value function of firms that is then used to show that firms only invest in applied research. Fi-

nally, I shows that the level of research effort exerted by firms is a constant share of profits for all

firms and that it is decreasing in the tax rate τ at a given level of spillovers.

Proof. I start by showing that Rg = Rgb, that is, all researchers paid by the government are doing

basic research.

Given an exogenous tax rate τ, the government raises revenues τΠ where Π is the aggregate

flow of profits in the economy. The government seeks to maximize the arrival rate of break-

throughs which is the sum of the flows of breakthroughs from basic and applied research: λ1R1 +
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λ0R0. Because the breakthrough Poisson rate per researcher is higher for basic research than for

applied research (λ1 > λ0) and the wage of researchers is common across basic and applied re-

searchers, the allocation of researchers that maximizes breakthrough flow is, trivially, a corner

solution where all government-funded researchers are doing basic research.

This proof follows the argument in the proof of proposition 1 in Jones and Kim (2018). The HJB

reads

(ρ + δ + δ)v(a, t) = max
e,β

ln(Ψa
θ

1−θ ) + ln(1 − e − τ) + α(e, β)ava(a, t) +
ν2

2
a2vaa(a, t) + vt(π, t)

Taking first order conditions of the HJB with respect to e gives

1
1 − e − τ

= ϕ(β)ava(a, t) (34)

I guess and verify that the value function takes the form v(a, t) = α0 + α1t + α2 ln(a). Using this

functional form for v(a, t), (34) becomes

1
1 − e − τ

= ϕ(β)α2 (35)

Using (35) and the guess for the functional form of the HJB gives

(ρ+ δ+ δ)(α0 + α1t+ α2 ln(a)) =
θ

1 − θ
ln(a)+ ln(Y(1− θ)A

θ
θ−1 )+ ln(1− e− τ)+ eϕ(β)α2 −

ν2

2
α2 + α1

Equating coefficients on ln(a) gives: α2 =
θ

(1 − θ)(ρ + δ + δ)
. Plugging this value of α2 into (35)

gives the optimal R&D effort level

e∗ = 1 − τ − 1 − θ

θ

ρ + δ + δ

ϕ(β)
(36)

This proves the third point of proposition 1.

To show that the HJB equation is linear in t, as posited by the conjecture, I first note that the

only term other than ln(a) that depends on time is ln(Y). As shown in lemma 1, Y = LAΨ with

Ψ = Γnt . In a balanced-growth path equilibrium, the flow rate of ideas ṅt is constant, so nt is linear

in t. This proves that ln(Y) is linear in t.

For completeness, the value function of a firm with productivity a is v(a, t) = α0 + α1t+ α2 ln(a)

with

101



α0 = C ln
(

L(1 − θ)A
θ

θ−1+1(1 − e∗ − τ)
)
+ C2

(
e∗ϕ(β)− ν2

2

)
θ

1 − θ
+ Cα1

α1 = C ln(Γ) ln((λRp)
ε(λRb)

γ)

α2 = C
θ

1 − θ

with C =
1

ρ + δ + δ

(37)

This step completes the derivation of the value function.

To prove that firms only invest in applied research, one notes that the value function is strictly

increasing in ϕ(β) at every level of research effort. Because ϕ0 > ϕ1, firm owners only invest in

applied research. This proves part (2) of the proposition.

□

G.7. Proof of lemma 2.

Proof. To find the stationary distribution of firms satisfying the KFE (18), guess that f takes the

form f (a) = Ca−ζ−1, where C is a positive constant. Insert this candidate solution in (18) and get

0 = −δCa−ζ−1 − α∂a[Ca−ζ ] +
ν2

2
∂aa[Ca−ζ+1] (38)

0 = −δCa−ζ−1 + αζCa−ζ−1 − ν2

2
(1 − ζ)ζCa−ζ−1 (39)

0 = −δ + αζ − ν2

2
(1 − ζ)ζ (40)

where α is shorthand for α(e∗, β∗).

This equation admits two solutions for ζ which are

ζ± = − α

ν2 +
1
2
±

√(
α

ν2 − 1
2

)2

+
2δ

ν2

The positive root is the only one consistent with a CDF that is a convergent integral.

Furthermore, the constant C is given by the requirement that the mass of firms integrates to 1.
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∫ ∞

a0

Ca−ζ−1da = 1

C
[

a−ζ

−ζ

]∞

a0

= 1

C

(
lim
z→∞

z−ζ

−ζ
+

a−ζ
0
ζ

)
= 1

C = ζa0
ζ

□

G.8. Proof of proposition 2.

Proof. On a BGP, the rate of creative destruction is δ = χṅ = ln((λRg)γ(λRp)ε). Replacing Rg and

Rp by the expressions in (22), taking derivatives with respect to τ and noting that ∂e∗/∂τ = −1

from (15), I obtain:

∂δ

∂τ
= R

γ

Λ
1

e∗/τΛ + 1
τ + e∗

τ2︸ ︷︷ ︸
marginal gain from public R&D

− RεΛ
1

τΛ/e∗ + 1
τ + e∗

e∗2︸ ︷︷ ︸
marginal loss from private R&D

The first term in the difference capture the (positive) impact of raising the tax rate on creative

destruction through the contribution of publicly-funded research. The second term captures the

declining contribution of privately-funded research to creative destruction when the tax rate in-

creases.

Setting
∂δ

∂τ
equal to 0 and solving for τ gives

τ∗ =
γe∗

εΛ

For values of τ in [0, τ∗), ∂δ

∂τ
is positive and the rate of creative destruction is increasing in the tax

rate. For values of τ in (τ∗, 0],
∂δ

∂τ
is negative. This shows that δ is inverted-U-shaped in the tax

rate.

From (19), one gets that ζ is increasing in δ and thus Pareto inequality η is decreasing in δ. In-

equality is minimized when δ is highest i.e. when τ∗ =
γe∗

εΛ
. Plugging the value of τ∗ into (22)

gives Rg
∗. This proves (1) and the inequality part of (3).

To show that the growth rate is inverted-U-shaped in the tax rate, I note that
∂g
∂τ

=
1 − θ

θ
ln(γ)

∂δ

∂τ
because δ = ṅt. Hence the comparative statics of g with respect to τ are the same as those for δ.
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Therefore g is growing in τ ∈ [0, τ∗), decreasing in τ ∈ (τ∗, 0] and maximized at τ∗. This proves

(2) as well as the growth part of (3) and thus completes the proof.

□
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APPENDIX H. CALIBRATION

H.1. Data. Data is annual. The historical TFP series come from Bergeaud et al. (2016) and is cal-

culated assuming a Cobb-Douglas aggregate production function with capital and labor inputs.65

Data on inequality between firms come from Kwon et al. (2022), who digitized archival records

from the US Internal Revenue Service. I use their series on firm assets to measure firm inequality

as it is continuous over the period of study (unlike their series on net income and receipts). I then

calculate the empirical Pareto tail exponent ζdata by using an insight from Chen (2022): with the

share of assets sx of the top x% firms, one can estimate the tail exponent as:

ζdata =

(
1 − ln(sx1 /sx2)

ln(x1/x2)

)−1

In my application, I use x1 = 10 and x2 = 1 so that inequality between firms is a function of

inequality between the top 10 and the top 1% of firms, by assets.

The tax rate τ (the main exogenous parameter of interest) is set to be a direct function of public

R&D spending: it evolves in concert with public R&D as a share of total R&D. I set the value of

τ equal to the effective corporate tax rate in the US in 1947, when the data is first available66. The

value of τ in the following years is then given by

τ = share of public R&D in total R&D × effective corporate tax rate at t = 0
share of public R&D in total R&D at t = 0

The tax rate calculated in this way closely follows the effective tax rate, as can be seen in Figure

20.

LONDON SCHOOL OF ECONOMICS, DEPARTMENT OF ECONOMICS

65Formally, TFP =
Y

KαL1−α
. Aggregate capital is the sum of ‘equipment’ and ‘buildings’, from the National

Accounts (BEA). Aggregate labor is the total number of hours worked (from various academic sources).
66The effective corporate tax rate is

aggregate profits before tax - aggregate profits after tax
aggregate profits before tax

. The effective

tax rate will be lower than the statutory tax rate if deductions, tax credits (from previous losses or from R&D
credits for instance) and tax avoidance schemes lower the tax burden of firms. It is a more representative
measure of the tax burden faced by firms. Data on total corporate profits before and after tax come from
the BEA series ‘Corporate profits before tax (without IVA and CCAdj)’ and ‘Corporate Profits After Tax
(without IVA and CCAdj)’, respectively.
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FIGURE 20. Effective tax rate in the US (orange) and tax rate used in the
model (blue)

Notes: The effective corporate tax rate is
aggregate profits before tax - aggregate profits after tax

aggregate profits before tax
. The effective

tax rate will be lower than the statutory tax rate if deductions, tax credits (from previous losses or from R&D
credits for instance) and tax avoidance schemes lower the tax burden of firms. It is a more representative mea-
sure of the tax burden faced by firms. Data on total corporate profits before and after tax come from the BEA
series ‘Corporate profits before tax (without IVA and CCAdj)’ and ‘Corporate Profits After Tax (without IVA and
CCAdj)’, respectively.
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